APP下载

肠-脑-肝轴在2型糖尿病及减重手术中的作用

2014-08-15王琰珉刘少壮张光永仲明惟闫治波胡三元

腹腔镜外科杂志 2014年1期
关键词:糖异生下丘脑小肠

王琰珉,刘少壮,张光永,张 翔,刘 腾,仲明惟,闫治波,胡三元

(山东大学齐鲁医院,山东 济南,250012)

2 型糖尿病(type 2 diabetes mellitus,T2DM)在世界范围内广泛流行,严重危害人类健康[1-2],且发病率逐年递增。据统计,2011年全球共有糖尿病患者3.66 亿,预计到2030年全球糖尿病发病人数将高达5.52 亿[3]。传统内科治疗,如饮食控制、运动、药物等治疗方法可在短期内改善血糖及其他代谢指标,但对长期减重、维持血糖良好控制、减少并发症的效果并不理想。而以胃旁路术(gastric bypass,GBP)为代表的减重手术不但可减轻体重,而且对T2DM 具有明显的治疗效果[4],可显著改善与代谢综合征相关的心血管风险[5-6],已被写入糖尿病治疗的指南中。有荟萃分析发现,接受GBP的T2DM 患者中,T2DM 的改善率为93. 2%,治愈率为83.7%,其效果显著优于内科治疗[7]。尽管GBP 对T2DM 的治疗作用确切,但术后糖尿病改善的机制目前仍未完全明确,食欲及体重的变化、消化道的重建、胆汁酸的重吸收、肠道激素的改变等,均可能发挥作用[8-13]。2008年加拿大学者[14]在Nature 上首次提出了肠-脑-肝轴(小肠、小肠迷走神经、下丘脑、肝迷走神经、肝脏糖代谢作为整体的调控轴)的存在,其研究表明食物中的脂质成分通过对正常大鼠上段小肠的刺激激活了肠-脑-肝轴对葡萄糖代谢的调控,从而使正常机体维持血糖稳态。肠-脑-肝轴概念的提出,为糖尿病发病机制及治疗手段的研究提供了新的视野与思路。本文现对肠-脑-肝轴在T2DM 及其在减重手术中的作用、相关研究进展综述如下。

1 肠-脑轴

小肠在GBP 术后血糖改善中具有重要作用,这一点目前已得到公认;本课题组在前期研究中也已证实,回肠转位术(ileal transposition,IT)、十二指肠-空肠旁路术(duodenaljejunal bypass,DJB)均对血糖代谢具有改善作用[8-9,15-17],以上两种手术方式并未改变胃的容积,且保留了幽门,并不加速胃内容物排空,因此充分反映了小肠的作用。

小肠是通过何种途径来参与GBP 后糖尿病的缓解呢?有学者认为,在人类及大鼠中,进入十二指肠的脂质,尤其长链脂肪酸,可快速发挥抑制食物摄入的作用[18-22]。小肠内的脂质可激活孤束核的感觉神经元[18],形成肠-脑神经轴,从而抑制摄食,并减少肝糖输出,此过程与小肠黏膜内的蛋白激酶C-δ(protein kinase C-δ,PKCδ)及胆囊收缩素(cholecystokinin,CCK)的释放有关[23-24]。研究表明,在正常生理状态下,通过肠-脑轴,小肠对于维持血糖稳态具有重要作用,其脂质成分对于食物摄入具有负调节作用。而在糖尿病大鼠中,根据Breen 等[22]的研究,十二指肠-空肠旁路术可快速有效地降低糖尿病大鼠的血糖水平,但如阻断空肠对于营养物质的感受作用,手术将失去效果,血糖会再次恶化。本课题组亦有研究证明,GK 大鼠(非肥胖T2DM 大鼠模型)下丘脑弓状核调控摄食的神经中枢阿黑皮素原(pro-opiomelanocortin,POMC)神经元在IT 后活性上调,表明POMC 在术后GK 大鼠的糖耐量改善中发挥作用[25]。因此可以说,肠-脑轴对于机体血糖稳态的维持具有重要作用,在减重手术后同样必不可少。

2 脑-肝轴

众所周知,中枢神经系统,尤其下丘脑,对于维持机体的各项生理功能(如体温调节、情绪调节、生物节律、激素分泌等)具有至关重要的作用。血糖的调控也不例外。较多研究表明,下丘脑可感受胰岛素、瘦素、胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)等激素水平[26-30],以及葡萄糖、脂肪酸等营养物质[31-33],从而调节肝脏葡萄糖的生成,维持血糖稳态。这正是“脑-肝轴”这一概念的由来。与小肠相似,脂质感受在下丘脑调节肝糖产生的过程中具有重要作用,在正常生理状态下,小肠内的脂质吸收入血后可升高下丘脑内的长链脂肪酸水平,后者在酶的作用下生成长链脂酰辅酶A,再通过激活PKCδ 及三磷酸腺苷敏感性钾通道(KATP 通道)抑制肝脏葡萄糖的产生;而通过侧脑室置管注射脂酰辅酶A 合成抑制剂或KATP 通道阻滞剂均可阻止下丘脑通过其脂质感受机制抑制肝脏葡萄糖的产生[34-35]。在高脂饮食状态下,下丘脑的脂质感受机制受损,其通过脂质感受调节肝脏葡萄糖产生的作用失衡[36],这参与了肝脏胰岛素抵抗的形成。由此可见,脑-肝轴在血糖调节中十分必要,脑-肝轴的失衡可能导致T2DM 的发生。

3 迷走神经的作用

在肠-脑轴调节血糖代谢的过程中,迷走神经发挥重要作用,它参与CCK[37-40]、瘦素[39-40]等激素抑制摄食的生理过程,维持血糖的正常水平;直接以电流刺激迷走神经,亦可抑制大鼠的摄食及体重增长[41]。反之,迷走神经的切断或阻断,不利于正常血糖的维持。研究表明,在实施了小肠迷走神经传入神经阻滞的动物中,小肠内的脂质失去了原本的减少摄食的作用[21,42];而肝脏迷走神经切断后,糖尿病大鼠的食物摄入,尤其脂肪摄入明显增加[43-44]。同样,下丘脑对血糖的调节作用也是通过迷走神经进行传导,肝脏迷走神经切断使得下丘脑脂质感受降低,葡萄糖生成的能力消失[45]。根据以上研究,迷走神经作为神经信号的传入传出通道,在血糖稳态的调节中至关重要;一旦迷走神经功能异常,血糖稳态便难以维持。

但也有文献指向相反的方面。有学者指出,迷走神经是胃饥饿素(Ghrelin)传递信号、发挥其促进食欲作用的重要路径[46]。而Kim 等[47]对16 例患有胃恶性肿瘤的患者进行了研究,将患者随机分为两组,分别在胃次全切除的同时保留或切断迷走神经,结果发现保留迷走神经的患者术后体重下降相对不明显,这与抑制摄食的重要激素酪酪肽(peptide tyrosine tyrosine,PYY)的活性降低有关。可见,具有多种生理功能的迷走神经,在食欲及血糖的调控方面,可能存在多方面的作用,需进行更加细致深入的研究加以明确。

4 肝-脑轴

早在20 世纪80年代末,有学者发现,向大鼠的门静脉内灌注葡萄糖可引起摄食的下降[48],这实际上是一种“肝-脑轴”。门静脉内的葡萄糖信号可激活门静脉壁内的葡萄糖感受器,经迷走神经传入纤维上传至下丘脑及孤束核,从而发挥抑制摄食的作用[49]。这种“肝-脑轴”的作用同样体现在小肠糖异生的过程中。

以往人们认为糖异生只能在肝脏、肾脏进行,但随着研究的深入,有学者发现在大鼠及人的肠道中,糖异生的两种关键酶——葡萄糖-6-磷酸酶(glucose-6-phosphatase,Glc6Pase)及磷酸烯醇式丙酮酸羧化激酶(phosphoenolpyruvate carboxykinase,PEPCK)也有少量表达,而在长期禁食的大鼠及糖尿病大鼠中,糖异生关键酶的活性及基因表达显著升高;同位素示踪技术显示禁食72 h 后小肠向门静脉释放的葡萄糖量可占葡萄糖总输出量的35%[50]。这提示小肠在正常情况下可进行较弱的糖异生活动,而在能量匮乏状态时,如禁食、控制较差的糖尿病等状态下,小肠糖异生能力大大增强,此时肝糖原已消耗殆尽,小肠糖异生成为维持血糖的重要途径[51-52]。与门静脉葡萄糖灌注相似,小肠糖异生使得进入门脉的葡萄糖增多,通过门脉感受器,将信号传入并激活下丘脑相应的功能区域,产生饱腹感,并促进胰岛素分泌,增强肝脏胰岛素敏感性,抑制肝糖输出[53]。此外,有研究证明,在门静脉处尚存在GLP-1 受体,参与血糖的调节[54]。

动物实验表明,对小鼠实施减重手术后,小肠的Glc6Pase 及PEPCK 表达升高,小肠糖异生增加,这与术后小鼠进食量下降与肝胰岛素敏感性升高密切相关;如在施行减重手术的同时阻滞门静脉的传入神经,手术会失去抑制进食、改善胰岛素抵抗的作用[55]。这再次证明了迷走神经在调节血糖稳态中的重要作用,也提示减重手术可能通过肝-脑轴发挥作用。

5 肠-脑-肝轴

正是基于对肠-脑轴及脑-肝轴等内容的研究,Wang等[14]提出肠-脑-肝轴的概念。他们进行了以下研究,向近端空肠灌注脂质,可增加此段肠道内长链脂肪酸辅酶A 的水平,且抑制葡萄糖生成;而向十二指肠灌注脂质的同时,一并灌注长链脂肪酸辅酶A 合酶抑制剂,或麻醉药物丁卡因,其抑制葡萄糖生成的作用消失;实施肠迷走神经传入神经阻滞或切断,或直接向第四脑室或孤束核灌注N 甲基D 天冬氨酸离子通道受体阻滞剂MK-801,或进行肝脏迷走神经切断,均使近端小肠内的脂质成分对于葡萄糖生成的抑制作用无效。这一系列的研究表明,近端小肠内的脂质水平激活了肠-脑-肝这条神经轴,使得葡萄糖生成受抑制。

肠-脑-肝轴这一概念,将上述肠-脑轴、脑-肝轴、迷走神经及肝脏有机联系在一起,揭示了一条先前并未充分认识的调控血糖稳态的通路。本课题组拟在此基础上,进一步研究肠-脑-肝神经轴作为一个整体在减重手术后胰岛素敏感性及糖代谢改善中发挥的作用,已成功申请国家自然基金项目并完成初步研究。

综上所述,小肠、小肠迷走神经、下丘脑、肝迷走神经及肝脏作为一个有机的整体,即所谓的肠-脑-肝轴,对于正常血糖的维持具有重要作用。在某些病理因素下,这个有机整体被破坏,可能导致胰岛素抵抗及T2DM 的发生,而减重手术可能对于肠-脑-肝轴的重新恢复具有积极作用,从而改善糖代谢紊乱。尽管目前尚缺乏足够证据证实这一点,尤其减重手术后肠-脑-肝轴的变化及作用需进行进一步的研究探索,但其在不远的将来可能会成为治疗T2DM 的新靶点。

[1]Hossain P,Kawar B,El Nahas M.Obesity and diabetes in the developing world-a growing challenge[J].N Engl J Med,2007,356(3):213-215.

[2]Mokdad AH,Ford ES,Bowman BA,et al.Prevalence of obesity,diabetes,and obesity-related health risk factors,2001[J]. JAMA,2003,289(1):76-79.

[3]Whiting DR,Guariguata L,Weil C,et al. IDF diabetes atlas:global estimates of the prevalence of diabetes for 2011 and 2030[J].Diabetes Res Clin Pract,2011,94(3):311-321.

[4]Pories WJ,Swanson MS,MacDonald KG,et al.Who would have thought it?An operation proves to be the most effective therapy for adult-onset diabetes mellitus[J].Ann Surg,1995,222(3):339-350.

[5]Rider OJ,Francis JM,Ali MK,et al.Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity[J].J Am Coll Cardiol,2009,54(8):718-726.

[6]Sjöström L,Lindroos AK,Peltonen M,et al. Lifestyle,diabetes,and cardiovascular risk factors 10 years after bariatric surgery[J].N Engl J Med,2004,351(26):2683-2693.

[7]Buchwald H,Avidor Y,Braunwald E,et al.Bariatric surgery:a systematic review and meta-analysis[J].JAMA,2004,292(14):1724-1737.

[8]Wang TT,Hu SY,Gao HD,et al.Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1[J].Ann Surg,2008,247(6):968-975.

[9]Liu S,Zhang G,Wang L,et al.The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats[J].Ann Surg,2012,256(6):1049-1058.

[10]Thaler JP,Cummings DE.Minireview:Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery[J].Endocrinology,2009,150(6):2518-2525.

[11]Rubino F,Forgione A,Cummings DE,et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes[J].Ann Surg,2006,244(5):741-749.

[12]Drucker DJ.The role of gut hormones in glucose homeostasis[J].J Clin Invest,2007,117(1):24-32.

[13]Simonen M,Dali-Youcef N,Kaminska D,et al.Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass[J].Obes Surg,2012,22(9):1473-1480.

[14]Wang PY,Caspi L,Lam CK,et al.Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production[J].Nature,2008,452(7190):1012-1016.

[15]Yan Z,Chen W,Liu S,et al.Myocardial insulin signaling and glucose transport are up-regulated in Goto-Kakizaki type 2 diabetic rats after ileal transposition[J].Obes Surg,2012,22(3):493-501.

[16]Sun D,Wang K,Yan Z,et al.Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats[J].Obes Surg,2013,23(11):1734-1742.

[17]Hu C,Zhang G,Sun D,et al.Duodenal-jejunal bypass improves glucose metabolism and adipokine expression independently of weight loss in a diabetic rat model[J].Obes Surg,2013,23(9):1436-1444.

[18]Greenberg D,Smith GP,Gibbs J.Intraduodenal infusions of fats elicit satiety in sham-feeding rats[J].Am J Physiol,1990,259(1 Pt 2):R110-R118.

[19]Mönnikes H,Lauer G,Bauer C,et al.Pathways of Fos expression in locus ceruleus,dorsal vagal complex,and PVN in response to intestinal lipid[J].Am J Physiol,1997,273(6 Pt 2):R2059-R2071.

[20]Matzinger D,Degen L,Drewe J,et al.The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans[J].Gut,2000,46(5):689-693.

[21]Feinle C,O'Donovan D,Doran S,et al.Effects of fat digestion on appetite,APD motility,and gut hormones in response to duodenal fat infusion in humans[J].Am J Physiol Gastrointest Liver Physiol,2003,284(5):G798-807.

[22]Breen DM,Rasmussen BA,Kokorovic A,et al.Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes[J].Nat med,2012,18(6):950-955.

[23]Breen DM,Yue JT,Rasmussen BA,et al.Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production[J].Diabetes,2011,60(12):3148-3153.

[24]Kokorovic A,Cheung GW,Breen DM,et al.Duodenal mucosal protein kinase C-δ regulates glucose production in rats[J].Gastroenterology,2011,141(5):1720-1727.

[25]Chen W,Yan Z,Liu S,et al.The changes of pro-opiomelanocortin neurons in type 2 diabetes mellitus rats after ileal transposition:the role of POMC neurons[J].J Gastrointest Surg,2011,15(9):1618-1624.

[26]Obici S,Zhang BB,Karkanias G,et al.Hypothalamic insulin signaling is required for inhibition of glucose production[J].Nat Med,2002,8(12):1376-1382.

[27]Gelling RW,Morton GJ,Morrison CD,et al.Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes[J].Cell Metab,2006,3(1):67-73.

[28]Coppari R,Ichinose M,Lee CE,et al.The hypothalamic arcuate nucleus:a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity[J].Cell Metab,2005,1(1):63-72.

[29]Kievit P,Howard JK,Badman MK,et al.Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells[J].Cell Metab,2006,4(2):123-132.

[30]Knauf C,Cani PD,Perrin C,et al.Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage[J].J Clin Invest,2005,115(12):3554-3563.

[31]Lam TK,Gutierrez-Juarez R,Pocai A,et al. Regulation of blood glucose by hypothalamic pyruvate metabolism[J]. Science,2005,309(5736):943-947.

[32]Parton LE,Ye CP,Coppari R,et al.Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity[J].Nature,2007,449(7159):228-232.

[33]Obici S,Feng Z,Morgan K,et al.Central administration of oleic acid inhibits glucose production and food intake[J].Diabetes,2002,51(2):271-275.

[34]Ross R,Wang PY,Chari M,et al. Hypothalamic protein kinase C regulates glucose production[J]. Diabetes,2008,57(8):2061-2065.

[35]Pocai A,Lam TK,Gutierrez-Juarez R,et al.Hypothalamic KATP channels control hepatic glucose production[J].Nature,2005,434(7036):1026-1031.

[36]Caspi L,Wang PY,Lam TK.A balance of lipid-sensing mechanisms in the brain and liver[J].Cell Metab,2007,6(2):99-104.

[37]Moran TH,Baldessarini AR,Salorio CF,et al.Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin[J].Am J Physiol,1997,272(4 pt 2):R1245-R1251.

[38]Cheung GW,Kokorovic A,Lam CK,et al.Intestinal cholecystokinin controls glucose production through a neuronal network[J].Cell Metab,2009,10(2):99-109.

[39]De Lartigue G,Barbier de la Serre C,Espero E,et al.Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats[J].PLoS One,2012,7(3):e32967.

[40]Peters JH,Simasko SM,Ritter RC.Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin[J].Physiol Behav,2006,89(4):477-485.

[41]Gil K,Bugajski A,Thor P.Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet[J].J Physiol Pharmacol,2011,62(6):637-646.

[42]Sclafani A,Ackroff K,Schwartz GJ.Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients[J].Physiol Behav,2003,78(2):285-294.

[43]La Fleur SE,Ji H,Manalo SL,et al.The hepatic vagus mediates fat-induced inhibition of diabetic hyperphagia[J].Diabetes,2003,52(9):2321-2330.

[44]Warne JP,Foster MT,Horneman HF,et al.Hepatic branch vagotomy,like insulin replacement,promotes voluntary lard intake in streptozotocin-diabetic rats[J].Endocrinology,2007,148(7):3288-3298.

[45]Lam TK,Pocai A,Gutierrez-Juarez R,et al.Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis[J].Nat Med,2005,11(3):320-327.

[46]Date Y,Murakami N,Toshinai K,et al.The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats[J].Gastroenterology,2002,123(4):1120-1128.

[47]Kim HH,Park MI,Lee SH,et al.Effects of vagus nerve preservation and vagotomy on peptide YY and body weight after subtotal gastrectomy[J].World J Gastroenterol,2012,18(30):4044-4050.

[48]Tordoff MG,Tluczek JP,Friedman MJ.Effect of hepatic portal glucose concentration on food intake and metabolism[J].Am J Physiol,1989,257(6 Pt 2):R1474-R1480.

[49]Shimizu N,Oomura Y,Novin D,et al.Functional correlations between lateral hypothalamic glucose-sensitive neurons and hepatic portal glucose-sensitive units in rat[J].Brain Res,1983,265(1):49-54.

[50]Mithieux G,Bady I,Gautier A,et al. Induction of control genes in intestinal glueoneogenesis is sequential during fasting and maximal in diabetes[J].Am J Physiol Endocrinol Metab,2004,286(3):E370-E375.

[51]Mithieux G.A novel function of intestinal gluconeogenesis:central signaling in glucose and energy homeostasis[J].Nutrition,2009,25(9):88l-884.

[52]Mithieux G,Gautier-Stein A,Rajas F,et al.Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat[J].Comp Biochem Physiol B Biochem Mol Biol,2006,143(2):195-200.

[53]Delaere F,Magnan C,Mithieux G.Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity[J].Diabetes Metab,2010,36(4):257-262.

[54]Vahl TP,Tauchi M,Durler TS,et al.Glucagon-like peptide-1 (GLP-1)receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats[J].Endocrinology,2007,148(10):4965-4973.

[55]Troy S,Soty M,Ribeiro L,et al.Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not gastric after lap-band in mice[J].Cell Metab,2008,8(3):201-211.

猜你喜欢

糖异生下丘脑小肠
用好小肠经,可整肠除湿热
石斛合剂基于PKB/FoxO1通路抑制糖尿病大鼠 肝糖异生的机制研究
马苏大马哈鱼籽营养成分分析及其卵磷脂对胰岛素抵抗的改善作用
肝糖异生的调控机制及降糖药物的干预作用
一根小肠一头猪
黄秋葵醇提物中2种成分对肝细胞糖异生及AMPKα磷酸化的影响
科学家发现控制衰老开关
中药对下丘脑作用的研究进展
回药阿夫忒蒙丸对失眠大鼠下丘脑5-HT和5-HIAA含量的影响
成人先天性小肠旋转不良长期误诊1例