玉米新品种新单38株型性状研究
2014-07-18马毅魏锋卫晓轶洪德峰马俊峰张学舜
马毅 魏锋 卫晓轶 洪德峰 马俊峰 张学舜
摘要:对新单38株型相关性状进行了调查研究。结果表明:新单38的株高、穗位高和雄穗长度均高于对照郑单958,且差异达显著或极显著水平;叶向值极显著大于郑单958,其株型更紧凑。亲本之间相比,新4白改(新单38母本)的叶夹角显著小于郑58(郑单958母本),说明其株型相对紧凑;新6/敦系3(新单38父本)的雄穗分枝数显著多于昌7-2(郑单958父本),说明其雄穗更发达,更有利于制种。测产结果显示,新单38单产比对照郑单958高8.4%,达极显著水平。
关键词:玉米;新单38;株型;产量
中图分类号:S513.01文献标识号:A文章编号:1001-4942(2014)05-0029-02
通过选择理想株型品种来提高玉米单产是育种者选育新品种的常用方法[1]。玉米株型育种包含了玉米生理生态育种的各个方面,株型性状的相互影响,最终决定了产量的获得[2]。玉米株型育种研究一直是育种者工作的热点。新单38是2013年河南省审定的玉米新品种,对其株型各相关性状进行研究可为该品种的推广提供技术依据。
1材料与方法
1.1材料
新单38(新4白改×新6/敦系3)由新乡市农业科学院选育而成。以郑单958(郑58×昌7-2)为对照。
1.2方法
试验于2013年在本院试验田进行。随机区组设计,重复3次。每个材料种植4行,行长4 m,行距60 cm,株距25 cm。管理同常规大田。
选代表性植株5株,于授粉后10天,测定株高、穗位高、第三节间茎粗、雄穗长度、雄穗分枝数、叶向值、叶夹角、叶面积共8个株型相关性状[3]。分别记载棒三叶的叶夹角(leaf angle,LA)、高点长(叶基至最高点距离,LF)、叶长(leaf length,LL)、叶宽(leaf width,LW)。叶向值(leaf orientation value,LOV)=ε(90-θ)×(LF/LL)/n,其中n表示测定叶片数,θ代表叶夹角的度数。以棒三叶平均叶夹角、叶向值、叶长、叶宽代表全株叶夹角、叶向值、叶长和叶宽[4]。
叶面积计算参照胡小平等的方法[5]。成熟后,收获小区中间两行进行测产。
1.3数据分析
用SPSS 17.0软件进行数据处理及分析。
2结果与分析
对新单38及其亲本8个株型相关性状和产量进行方差分析,结果(表1)表明。新单38的株高、雄穗长度、叶向值和产量均极显著高于对照郑单958,分别高11.6%、13.3%、13.9%和8.4%;穗位高显著高于对照(3.1%);新单38的第三节间茎粗、雄穗分枝数、叶夹角和叶面积4个性状,与对照郑单958相比,无显著差异。
亲本自交系间相比,除第三节间茎粗和叶面积外,自交系间的其余株型性状均存在显著或极显著差异。其中,新单38双亲的株高和穗位高均低于昌7-2,高于郑58,且差异均达极显著水平;新单38母本新4白改的雄穗长度极显著低于其余自交系;新单38父本新6/敦系3的雄穗分枝数显著多于昌7-2;与郑单958母本郑58相比,新单38母本新4白改的叶夹角显著小于对照(23.7%)。
3结论与讨论
叶向值是表示叶片与茎秆夹角大小及叶片在空间下垂程度的综合指标,其值越大,表明叶片上冲性越强,株型紧凑;值越小,则表示叶片下垂程度越大,株型越平展[6]。新单38的叶向值极显著大于对照郑单958,说明新单38株型更紧凑。
对新单38及其亲本8个株型相关性状的分析结果表明,新单38的株高、雄穗长度极显著高于郑单958,穗位高显著高于郑单958。从亲本来看,新单38母本新4白改的叶夹角显著小于郑58,说明其母本的株型相对紧凑。新单38父本新6/敦系3的雄穗分枝数显著多于昌7-2,说明其父本的雄穗更发达,更有利于制种。
参考文献:
[1]王元东,段民孝,邢锦丰,等.玉米理想株型育种的研究进展与展望[J].玉米科学,2008,16(3):47-50.
[2]张旭,王占森,谢虹,等.玉米株型育种研究进展[J].种子,2010,29(2):52-55.
[3]黄磊玉,吴广霞,王玉梅,等.黄早四及衍生自交系株型性状研究[J].玉米科学,2011,19(1):27-30.
[4]赵文明.玉米株型相关性状QTL定位与分析[D].郑州:河南农业大学,2008.
[5]胡小平,薛永祥.玉米单株叶面积的快速测定[J].玉米科学,1993,1(3):77-78.
[6]Pepper G E,Pearce R B,Mock J J.Leaf orientation and yield of maize[J].Crop Science,1977,17:883-886.(上接第11页)
[19]Welsch R, Beyer P, Hugueney P, et al. Regulation and activation of phytoenesynthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis[J]. Planta, 2000, 211(6):846-854.
[20]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development[J]. Exp. Bot., 2002, 53:2107-2113.
[21]Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings[J]. Plant J., 2009, 60(3):424-435.
[22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.
[23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.
[24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.
[25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.
[26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.
[27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.
[28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.
[29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.
[22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.
[23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.
[24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.
[25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.
[26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.
[27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.
[28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.
[29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.
[22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.
[23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.
[24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.
[25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.
[26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.
[27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.
[28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.
[29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.