牙鲆变态期间核酸、总蛋白的变化及其与生长的关系
2014-07-16佟雪红等
佟雪红等
摘要:研究牙鲆变态期间核酸、总蛋白及其比值的变化,并确定其与生长的关系。结果显示,DNA浓度在22~32日龄保持相对稳定,在32~34日龄急剧升高,在36日龄达到最高。RNA浓度在24日龄升至峰值,在32日龄降至最低,之后呈先升高再下降的趋势。总蛋白浓度在22~29日龄呈升高趋势,之后先降低再上升。DNA、RNA含量及总蛋白含量在变态期间均保持先升高后降低再升高的趋势,在32~36日龄快速增长。RNA/DNA比值在22~24日龄呈上升趋势,然后下降直至32日龄,之后先上升后下降,并在36日龄达到最低值(2.27)。Protein/DNA比值在29日龄达到最高值(61.97),之后先下降后上升。RNA、DNA浓度及总蛋白浓度与体长和体重有明显的线性关系。结果表明,牙鲆变态高峰期前的生长以细胞增大为主,变态后的生长以细胞增殖为主,RNA、DNA及其比值可以从微观细胞水平上指示仔稚鱼的生长。
关键词:牙鲆;变态;核酸;RNA/DNA;Protein/DNA
中图分类号:S917.4 文献标志码:A 文章编号:1002-1302(2014)03-0171-03
鱼类在养殖过程中通常采用测定体长和体重的方式确定生长状况。但早期发育阶段,仔稚鱼形体较小,精确测定其形态指标比较困难,降低了应用体长或体重来评价生长的可行
性。有研究表明,生化指标能够准确地检测到鱼类生长的细微变化和食物分布的波动[1]。因此,在通过传统方法不能度量出鱼类生长的变化时,采用有效的生化指标来评价鱼类的生长是非常重要的。鱼类的生长依赖于蛋白质的持续合成,RNA和DNA在仔鱼生长和发育中也有重要作用。RNA参与合成蛋白质,控制着细胞和核糖体的体积,进一步影响细胞的生长率。DNA是生物的遗传物质,DNA浓度高表明单位组织中细胞数目多,RNA/DNA是体内蛋白质合成的体现。根据RNA/DNA比值可以估算出鱼类的生长速度[2-4]。 目前已在隆头鱼(Tautoga Onitis)[5]、黑线鳕(Melanogrammus aeglefinus)[6]、东方蓝鳍鲔(Thunnus orientalis)[7]、草鱼(Ctenopharyngodon idellus)[8]、红鳍东方鲀(Takifugu rubripes)[9]等鱼中进行了核酸指标与生长参数的研究,结果表明RNA/DNA比值是评价养殖鱼类生长潜能的敏感参数。在鱼类的体长、体重较难测量时,可以采用核酸指标来度量生长状况。
牙鲆在我国俗称牙片、偏口,是名贵的海产鱼类,又是重要的海水增养殖鱼类之一,经济价值较高。在早期发育阶段,牙鲆仔鱼要经历变态过程,身体逐渐偏转90°,导致脑颅及脑腔变形,同时生活方式也从浮游型转变为底栖埋伏型[10]。变态期往往伴随着营养危机和高死亡率,是鲆鲽鱼类早期发育阶段的关键期,并决定着年产量和经济收益[11]。探究变态期仔稚鱼的生长发育,了解鱼苗的生理状况,有助于优化养殖管理,提高成活率。因此,本研究分析变态期间牙鲆仔稚鱼DNA、RNA和总蛋白的变化规律,确定上述生化指标跟生长的数量关系,以期建立从微观细胞水平上评价仔稚鱼生理状态的方法,为发育生理等方面的深入研究提供基础资料。
1 材料与方法
1.1 样品采集和保存
试验所用牙鲆鱼苗取自江苏省赣榆县海头镇养鱼场,培育时水温16~19 °C,溶氧7.9~8.7 mg/L,盐度3.1%~3.3%。分别在22、24、28、29、32、34、36日龄上午投饵前定点定时取样,按照鱼苗大小随机取一定量的样品用于测定RNA、DNA浓度及总蛋白浓度,样品麻醉后快速保存于液氮中备用。在测定DNA、RNA浓度及总蛋白浓度前,于半解冻的状态下用游标卡尺和电子天平测定体长(BL)、全长(TL)及体重(BW)。
1.2 核酸和总蛋白的测定
按照Buckley等[12]和Kuropat等[13]的方法,略作修改进行测定。采用整体匀浆法提取牙鲆仔稚鱼的核酸和总蛋白,进一步用紫外分光光度法测定并计算RNA和DNA的含量及浓度,依据Bradford的方法[14]测定总蛋白含量及浓度。
1.3 数据分析
试验数据均用“平均值±标准差”表示,采用SPSS 13.0软件进行统计分析。
2 结果与分析
2.1 DNA、RNA及总蛋白的变化
由图1可知,DNA浓度在22~32日龄期间保持相对稳定,32~34日龄时急剧升高,34~36日龄缓慢升高,在36日龄达到最高值。RNA浓度在24日龄升至峰值(2.34 μg/mg),然后逐渐下降,在32日龄降至最低值(1.15 μg/mg),之后呈先升高再下降的趋势。总蛋白浓度在22~29日龄间呈升高趋势,之后呈先降低再上升的趋势。
由图2可知,DNA、RNA含量及总蛋白含量在牙鲆变态期间均呈先升高后降低再升高的趋势,在32~36日龄期间快速增长。
2.2 Protein/DNA和RNA/DNA的变化
由图3可知,RNA/DNA比值在22~24日龄期间呈上升趋势,之后保持下降趋势直至32日龄,再呈先上升后下降的趋势,在试验结束时达到最低值(2.27)。Protein/DNA比值在22~29日期间呈上升趋势,并在29日龄达到最高值(6197),之后呈先下降后上升趋势。
2.3 核酸、总蛋白浓度与牙鲆体长、体重的关系
由表1、图4、图5可知,RNA、DNA浓度及总蛋白浓度与牙鲆体长和体重有明显的线性关系;RNA/DNA和 Protein/DNA 与牙鲆体长和体重的线性关系弱于RNA、DNA浓度及总蛋白浓度。
DNA含量是反映生物体内细胞数目的指标[18]。29日龄时DNA含量较低,这跟此时牙鲆的形体剧烈改变有关;之后DNA含量呈升高趋势,可能是因为牙鲆生活方式由浮游状态改变到底栖状态,此时刚经历变态过程,生理状况较差[19]。
由DNA和RNA的变化曲线可知,牙鲆变态开始至变态高峰期的生长以细胞增大为主,变态高峰后的生长以细胞增殖为主。微观生长方式的改变对应的是宏观养殖环境中牙鲆仔稚鱼的发育状况和生活方式的变化。
3.2 RNA/DNA
RNA/DNA是生物体中细胞代谢强度的指示指标,可用来评价鱼类的生理状况[20]。本试验中RNA/DNA比值随日龄增长和鱼体增大呈下降趋势,在青鱼和日本沙丁鱼中也有类似的结果[21-22],推测可能是因为变态期RNA量呈下降趋势、DNA量呈增长趋势,变态后RNA的增长幅度弱于DNA的增长幅度,即细胞增殖的速度高于蛋白合成的速度,这跟该时期牙鲆稚鱼生活方式由浮游转为底栖相关联。有研究表明,RNA/DNA比值还可以预测生物的营养状况,该比值有个界限值2.49,低于该界限值的生物处于“亚健康”状态或者饥饿状态[23]。本研究中牙鲆稚鱼在36日龄时RNA/DNA比值为2.27,表明该时期的牙鲆稚鱼处于营养不良状态,推测可能是因为稚鱼刚转变为底栖生活,生活方式的剧烈改变会对其摄食产生一定障碍,进而影响到其营养状况和生长。
3.3 Protein/DNA
蛋白质在细胞中占有很高的比例,因此Protein/DNA比值可作为指示细胞大小或者细胞重量的指标[18]。本研究中该比值在变态高峰期前保持升高趋势,在29日龄时达到最高值,表明该时期鱼体的生长以细胞增大为主。随后稚鱼转入底栖生活,生活环境的急剧改变会对其摄食产生影响,此时鱼体会大量消耗前期合成的蛋白质,导致变态后的Protein/DNA比值呈急剧下降趋势,在条斑星鲽也发现了类似试验结果[15]。待底栖环境适应后,稚鱼逐渐减少对自身蛋白的利用率,加大对外源食物的摄入量,体内蛋白含量逐步升高,导致该比值在后期呈升高趋势。
参考文献:
[1]Buckley L J,Calderone E,Ong T L. RNA-DNA ratio and other nucleic acid-base indicators for growth and condition of marine fishes[J]. Hydrobiology,1999,401:265-277.
[2]Gwak W S,Tanaka M. Developmental change in RNA:DNA ratios of fed and starved laboratory-reared Japanese flounder larvae and juveniles,and its application to assessment of nutritional condition for wild fish[J]. Journal of Fish Biology,2001,59(4):902-915.
[3]Gwak W S,Tsusaki T,Tanaka M. Nutritional condition,as evaluated by RNA/DNA ratios,of hatchery-reared Japanese flounder from hatch to release[J]. Aquaculture,2003,219(4):503-514.
[4]Tanaka Y,Satoh K,Yamada H,et al. Assessment of the nutritional status of field-caught larval Pacific bluefin tuna by RNA/DNA ratio based on a starvation experiment of hatchery-reared fish[J]. Journal of Experimental Marine Biology and Ecology,2008,354(1):56-64.
[5]Mercaldo-Allen R,Kuropat C,Caldarone E M. A model to estimate growth in young-of-the-year tautog,Tautoga onitis,based on RNA/DNA ratio and seawater temperature[J]. Journal of Experimental Marine Biology and Ecology,2006,329(2):187-195.
[6]Caldarone E M. Estimating growth in haddock larvae Melanogrammus aeglefinus from RNA:DNA ratios and water temperature[J]. Marine Ecology Progress Series,2005,293:241-252.
[7]Tanaka Y,Gwak W S,Tanaka M,et al. Ontogenetic changes in RNA,DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis[J]. Fisheries Science,2007,73:378-384.
[8]罗 莉,文 华,王 琳,等. 牛磺酸对草鱼生长、品质、消化酶和代谢酶活性的影响[J]. 动物营养学报,2006,18(3):166-171.
[9]梁萌青,王成刚,陈 超,等. 几种添加剂对红鳍东方鲀的促生长效果与RNA/DNA关系[J]. 海洋水产研究,2001,22(2):38-41.
[10]鲍宝龙,杨桂梅,任大明. 牙鲆变态过程中的细胞凋亡[J]. 动物学报,2006,52(2):355- 361.
[11]Amara R,Galois R. Nutritional condition of metamorphosing sole:spatial and temporal analyses[J]. Journal of Fish Biology,2004,64(1):72-88.
[12]Buckley L J,Bulow F J. Techniques for the estimation of RNA,DNA,and protein in fish[M]//Summerfelt R C,Hall G E. The age and growth of fish. Ames,IA:Iowa State University Press,1987:345-354.
[13]Kuropat C,Mercaldo-Allen R,Caldarone E,et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautogaonitis[J]. Marine Ecology-Progress Series,2002,230:265-274.
[14]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.
[15]佟雪红,徐世宏,刘清华,等. 条斑星鲽变态期间DNA、RNA及总蛋白变化的研究[J]. 海洋科学,2010,34(5):41-48.
[16]Tanaka M,Kawai S,Seikai T,et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J]. Marine and Freshwater Behaviour and Physiology,1996,28:19-31.
[17]Peck M A,Buckley L J,Caldarone E M,et al. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J]. Marine Ecology Progress Series,2003,251:233-243.
[18]Park S U,Lim H K,Han H S. Changes in RNA/DNA ratio and growth of slime flounder,Microstomus achne,larvae until metamorphosis[J]. Journal of Applied Ichthyology,2008,24(1):50-54.
[19]Malzahn A M,Clemmesen C,Rosenthal H. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish[J]. Marine Ecology Progress Series,2003,259:285-293.
[20]Vinagre B C,Fonseca V,Maia A,et al. Habitat specific growth rates and condition indices for the sympatric soles Solea solea(Linnaeus,1758)and Solea senegalensis Kaup 1858,in the Tagus estuary,Portugal,based on otolith daily increments and RNA-DNA ratio[J]. Journal of Applied Ichthyology,2008,24(2):163-169.
[21]Clemmesen C. The effect of food availability,age or size on the RNA/DNA ratio of individually measured herring larvae:laboratory calibration[J]. Marine Biology,1994,118:377-382.
[22]Kimura R,Watanabe Y,Zenitani H. Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current[J]. Journal of Marine Sciences,2000,57(2):240-248.
[23]Islam M S,Tanaka M. Nutritional condition,starvation status and growth of early juvenile Japanese sea bass (Lateolabrax japonicus) related to prey distribution and feeding in the nursery ground[J]. Journal of Experimental Marine Biology and Ecology,2005,323:172-183.
[11]Amara R,Galois R. Nutritional condition of metamorphosing sole:spatial and temporal analyses[J]. Journal of Fish Biology,2004,64(1):72-88.
[12]Buckley L J,Bulow F J. Techniques for the estimation of RNA,DNA,and protein in fish[M]//Summerfelt R C,Hall G E. The age and growth of fish. Ames,IA:Iowa State University Press,1987:345-354.
[13]Kuropat C,Mercaldo-Allen R,Caldarone E,et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautogaonitis[J]. Marine Ecology-Progress Series,2002,230:265-274.
[14]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.
[15]佟雪红,徐世宏,刘清华,等. 条斑星鲽变态期间DNA、RNA及总蛋白变化的研究[J]. 海洋科学,2010,34(5):41-48.
[16]Tanaka M,Kawai S,Seikai T,et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J]. Marine and Freshwater Behaviour and Physiology,1996,28:19-31.
[17]Peck M A,Buckley L J,Caldarone E M,et al. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J]. Marine Ecology Progress Series,2003,251:233-243.
[18]Park S U,Lim H K,Han H S. Changes in RNA/DNA ratio and growth of slime flounder,Microstomus achne,larvae until metamorphosis[J]. Journal of Applied Ichthyology,2008,24(1):50-54.
[19]Malzahn A M,Clemmesen C,Rosenthal H. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish[J]. Marine Ecology Progress Series,2003,259:285-293.
[20]Vinagre B C,Fonseca V,Maia A,et al. Habitat specific growth rates and condition indices for the sympatric soles Solea solea(Linnaeus,1758)and Solea senegalensis Kaup 1858,in the Tagus estuary,Portugal,based on otolith daily increments and RNA-DNA ratio[J]. Journal of Applied Ichthyology,2008,24(2):163-169.
[21]Clemmesen C. The effect of food availability,age or size on the RNA/DNA ratio of individually measured herring larvae:laboratory calibration[J]. Marine Biology,1994,118:377-382.
[22]Kimura R,Watanabe Y,Zenitani H. Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current[J]. Journal of Marine Sciences,2000,57(2):240-248.
[23]Islam M S,Tanaka M. Nutritional condition,starvation status and growth of early juvenile Japanese sea bass (Lateolabrax japonicus) related to prey distribution and feeding in the nursery ground[J]. Journal of Experimental Marine Biology and Ecology,2005,323:172-183.
[11]Amara R,Galois R. Nutritional condition of metamorphosing sole:spatial and temporal analyses[J]. Journal of Fish Biology,2004,64(1):72-88.
[12]Buckley L J,Bulow F J. Techniques for the estimation of RNA,DNA,and protein in fish[M]//Summerfelt R C,Hall G E. The age and growth of fish. Ames,IA:Iowa State University Press,1987:345-354.
[13]Kuropat C,Mercaldo-Allen R,Caldarone E,et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautogaonitis[J]. Marine Ecology-Progress Series,2002,230:265-274.
[14]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.
[15]佟雪红,徐世宏,刘清华,等. 条斑星鲽变态期间DNA、RNA及总蛋白变化的研究[J]. 海洋科学,2010,34(5):41-48.
[16]Tanaka M,Kawai S,Seikai T,et al. Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement[J]. Marine and Freshwater Behaviour and Physiology,1996,28:19-31.
[17]Peck M A,Buckley L J,Caldarone E M,et al. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus[J]. Marine Ecology Progress Series,2003,251:233-243.
[18]Park S U,Lim H K,Han H S. Changes in RNA/DNA ratio and growth of slime flounder,Microstomus achne,larvae until metamorphosis[J]. Journal of Applied Ichthyology,2008,24(1):50-54.
[19]Malzahn A M,Clemmesen C,Rosenthal H. Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish[J]. Marine Ecology Progress Series,2003,259:285-293.
[20]Vinagre B C,Fonseca V,Maia A,et al. Habitat specific growth rates and condition indices for the sympatric soles Solea solea(Linnaeus,1758)and Solea senegalensis Kaup 1858,in the Tagus estuary,Portugal,based on otolith daily increments and RNA-DNA ratio[J]. Journal of Applied Ichthyology,2008,24(2):163-169.
[21]Clemmesen C. The effect of food availability,age or size on the RNA/DNA ratio of individually measured herring larvae:laboratory calibration[J]. Marine Biology,1994,118:377-382.
[22]Kimura R,Watanabe Y,Zenitani H. Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic waters along the Kuroshio Current[J]. Journal of Marine Sciences,2000,57(2):240-248.
[23]Islam M S,Tanaka M. Nutritional condition,starvation status and growth of early juvenile Japanese sea bass (Lateolabrax japonicus) related to prey distribution and feeding in the nursery ground[J]. Journal of Experimental Marine Biology and Ecology,2005,323:172-183.