APP下载

基于贝叶斯动态面板数据模型的中国出口贸易地区结构研究

2014-06-28朱慧明欧阳文静游万海��

财经理论与实践 2014年2期
关键词:汇率波动出口贸易

朱慧明++欧阳文静++游万海��

摘 要:运用贝叶斯动态面板数据模型考量中国出口贸易的地区结构差异性,结果表明:基于Gibbs抽样算法的贝叶斯动态面板回归模型能有效刻画各地区出口竞争力的路径依赖特征;FDI对出口竞争力的影响具有一定的时滞性,而汇率波动对出口竞争力的影响则具有明显的地域差异性。

关键词: 出口贸易;动态随机效应;贝叶斯分析;FDI;汇率波动

中图分类号:F746.12;O212.8 文献标识码: A 文章编号:1003-7217(2014)02-0109-07

一、引 言

面板数据由Mundlak引入到计量经济学研究中,结合了截面数据和时间序列数据的优点,通过截距项刻画个体差异在数据调整过程中的动态变化,有效减少了数据生成过程中由于加总产生的偏误,充分利用更多数据的信息,提高参数估计的有效性和准确性[1-2]。Balestra和Nerlove发现大量经济变量表现出动态滞后效应,即经济变量数据除了受当期因素的影响,还会受到非本期因素的影响。为刻画动态滞后效应,在静态面板数据模型中引入滞后被解释变量,构建动态面板数据模型。该模型可以用于描述多个经济变量之间的动态关系,被广泛应用于金融、经济、管理等领域[3]。Egger P建立动态面板数据模型发现双边贸易和FDI之间的关系互补[4-5]。Chiara认为垂直型FDI把生产的不同阶段放到不同国家,由此带动中间投入品的进口和产成品的出口[6]。Marc Auboin用最大似然估计法发现,汇率的不确定性对出口有显著的负面影响[7]。Tang Kin Boon用异质面板协整检验验证了出口需求函数的变量之间的协整关系,研究发现外债对出口的影响因货币贬值的幅度而改变[8,9]。Ciarret构建面板数据模型研究发现能源价格和GDP电力消费有双向因果关系[10]。为揭示经济学理论的动态关系,一些学者研究动态面板数据模型的参数估计问题,提出三种主要的参数估计方法:广义矩(Generalized Methods of Moments,GMM)方法,校正的最小二乘虚拟变量估计法(Least Squares with Dummy Variable,LSDV)和层次贝叶斯估计法。Anderson 使用工具变量方法对含有一阶差分变量的动态面板模型进行估计,得到了模型参数的一致性估计[11]。但工具变量法在估计时忽视了随机误差项的结构,因此估计量不具有有效性。Holtz-Eakin在Anderson工具变量估计法的基础上,研究了时变参数的向量自回归模型的参数估计问题[12]。Arrelano将一阶差分广义矩(GMM)估计方法引入到动态面板数据的估计中[13]。Maurice用局内变量或者前定变量的滞后值作为工具变量来估计参数[14],提高了模型参数估计的有效性。HsinChen研究GMM估计量的大样本性质,发现当动态面板数据模型中存在高度序列自相关性时,GMM估计量是有偏差的[15]。Hahn采用校正的最小二乘虚拟变量估计量去估计参数,发现当时间维数比较小时,校正的最小二乘虚拟变量估计量比GMM方法更精确[16]。Giovanni针对模型存在的个体异质性提出广义最小二乘法,并通过蒙特卡洛研究发现广义最小二乘估计有最小的偏差和均方根误差[17]。

贝叶斯统计推断技术特别是马尔科夫链蒙特卡洛(MCMC)稳态模拟技术的发展,为动态面板数据模型的研究提供有效的途径[18,19]。Hsiao 指出,使用层次贝叶斯方法估计随机效应自回归面板数据模型时,在大面板数据条件下,贝叶斯估计量与组平均估计量渐进等价。贝叶斯分析方法在动态面板数据模型参数估计的应用,可以避免GMM估计方法和最小二乘虚拟变量估计法存在的参数估计不准确、有偏的问题[20]。

本文将利用贝叶斯统计推断理论,构建含外生变量的动态随机效应面板模型,通过参数的分层先验分布研究贝叶斯模型参数的后验分布(posterior distribution),设计相应的马尔科夫蒙特卡洛(Markov chain Monte Carlo,简称MCMC)抽样算法进行模型参数估计,并对中国出口贸易地区结构的差异性进行实证分析。

二、贝叶斯动态面板数据模型构建

(一)模型结构

动态面板模型是一类重要的经济计量模型,其数学表达形式如下:

四、结 论

本文应用动态面板数据模型研究我国地区出口贸易结构差异性,结果表明,出口贸易竞争力具有很强的路径依赖特征。因此要缩小地区发展差距需要一个长期的过程,需要不断引导外商直接投资向中西部地区转移,加强和完善中西部地区的优惠政策和基础设施建设。同时,FDI的流入在促进出口时存在一定的时滞性,即FDI的流入须经过早期投入和生产过程后才能促进出口。从地域差别的角度来看,FDI的流入加剧了地区出口贸易发展的不平衡,说明东部、中部和西部地区出口贸易竞争力对人民币汇率波动的敏感性存在显著差异,即越开放的地区对人民币汇率波动越敏感。

参考文献:

[1]Rahman, Sajjadur & Serletis, Apostolos. The effects of exchange rate uncertainty on exports [J]. Journal of Macroeconomics, 2009, 31(3):500-507.

[2]Rfat Bar Tekin. Economic growth, exports and foreign direct investment in least developed countries:a panel granger causality analysis [J]. Economic Modelling, 2012, 29(3): 868-878.

[3]Balestra P, M Nerlove. Pooling cross section and time series data in the estimation of a dynamie model: the demand for natural Gas [J]. Econometrica, 1966, 34(3): 585-612.

[4]Egger P. European exports and outward foreign direct investment: a dynamic panel data approach [J]. Review of World Economics, 2009, 37(3): 427-449.

[5]蒋仁爱, 冯根福. 贸易、FDI、无形技术外溢与中国技术进步 [J]. 管理世界, 2012, 15(9): 49-60.

[6]Chiara Franco. Exports and FDI motivations:empirical evidence from US foreign subsidiaries [J]. International Business Review, 2013, 22(4): 47-62.

[7]Marc Auboin, Michel Ruta. The relationship between exchange rates and international trade: a literature review [J]. World Trade Review, 2012, 12(3): 60-77.

[8]Tang Kin Boon, Tan Hui Boon. The effect of foreign currency borrowing and financial development on exports: a dynamic panel analysis on asiapacific countries [J]. Journal of the Asia Pacific Economy, 2012, 18(3): 460-476.

[9]Tsay R S, Ando T. Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market [J]. Computational Statistics and Data Analysis, 2012, 56(11): 3345-3365.

[10]A Ciarret, A Zarraga. Economic growthelectricity consumption causality in 12 european countries: a dynamic panel data approach [J]. Energy Policy, 2010, 38(7): 3790-3796.

[11]Anderson T W, Hsiao C. Formulation and estimation of dynamic models using panel data [J]. Joumal of Econometrics, 1982, 18(3): 47-82.

[12]Holtz Eakin D W, Neweyand H S. Estimating vector autoregressions with panel data [J]. Econometrica, 1988, 56(10): 1371-1395.

[13]Arrelano M, S R Bond. Another look at the instrumental variable estimation of errorcomponents models [J]. Journal of Econometrics, 1995, 68(3): 29-51.

[14]Maurice J G, Frank Windmeijer. The weak instrument problem of the system GMM estimator in dynamic panel data models [J]. The Econometrics Journal, 2010, 13(1): 95-126.

[15]Hsin Chen Chang, BwoNung Huang, Chin Wei Yang. Military expenditure and economic growth across different groups:a dynamic panel grangercausality approach [J]. Economic Modelling, 2011, 28(6): 416-423.

[16]Hahn J, Kuersteiner G. Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large [J]. Econometrica, 2002, 70(5): 639-657.

[17]Giovanni S, Bruno. Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models [J]. Economics Letters, 2005, 87(3): 361-366.

[18]李鲲鹏, 文益俊. 交互效应面板模型EM算法和MCMC算法 [J]. 数理统计与管理, 2012, 29(4): 150-161.

[19]吴俊, 宾建成. 中国商业银行操作风险损失分布甄别与分析: 基于贝叶斯MCMC频率方法 [J]. 财经理论与实践,2011,32(5):8-14.

[20]Cheng Hsiao, A K Tahmiscioglu. Estimation of dynamic panel data models with both individual and timespecific effects [J]. Journal of Statistical Planning and Inference, 2008, 138(9): 698-721.

(责任编辑:姚德权)

Regional Structure of Chinese Export Trade Based on Bayesian Dynamic Panel Data Model

ZHU Huiming,OU YANG Wenjing,YOU Wanhai

. (School of Business Administration,Hunan University,Changsha 410082,China).

Abstract:This paper constructs a Bayesian dynamic panel data model to address uncertain risk of inference in random coefficient, sets the corresponding prior distribution, and uses the Bayesian theorem to infer the posterior distribution of the parameters. In order to investigate the regional structure of China's export trade, we calculate the indicators export competitiveness (ECI) to measure the regional structure of China's export trade, and then conduct an empirical analysis. The results show that the Bayesian dynamic panel regression model based on Gibbs sampling algorithm can effectively capture the characteristics of the path dependence in export competitiveness of all regions. In addition, the effect of the FDI on the export competitiveness will have a lag, while the impact of the exchange rate fluctuations on the export competitiveness has obvious regional differences.

Key words:Export Trade;Dynamic Random Effects;Bayesian Analysis;Foreign Direct Investment (FDI);Exchange Rate Fluctuation

[20]Cheng Hsiao, A K Tahmiscioglu. Estimation of dynamic panel data models with both individual and timespecific effects [J]. Journal of Statistical Planning and Inference, 2008, 138(9): 698-721.

(责任编辑:姚德权)

Regional Structure of Chinese Export Trade Based on Bayesian Dynamic Panel Data Model

ZHU Huiming,OU YANG Wenjing,YOU Wanhai

. (School of Business Administration,Hunan University,Changsha 410082,China).

Abstract:This paper constructs a Bayesian dynamic panel data model to address uncertain risk of inference in random coefficient, sets the corresponding prior distribution, and uses the Bayesian theorem to infer the posterior distribution of the parameters. In order to investigate the regional structure of China's export trade, we calculate the indicators export competitiveness (ECI) to measure the regional structure of China's export trade, and then conduct an empirical analysis. The results show that the Bayesian dynamic panel regression model based on Gibbs sampling algorithm can effectively capture the characteristics of the path dependence in export competitiveness of all regions. In addition, the effect of the FDI on the export competitiveness will have a lag, while the impact of the exchange rate fluctuations on the export competitiveness has obvious regional differences.

Key words:Export Trade;Dynamic Random Effects;Bayesian Analysis;Foreign Direct Investment (FDI);Exchange Rate Fluctuation

[20]Cheng Hsiao, A K Tahmiscioglu. Estimation of dynamic panel data models with both individual and timespecific effects [J]. Journal of Statistical Planning and Inference, 2008, 138(9): 698-721.

(责任编辑:姚德权)

Regional Structure of Chinese Export Trade Based on Bayesian Dynamic Panel Data Model

ZHU Huiming,OU YANG Wenjing,YOU Wanhai

. (School of Business Administration,Hunan University,Changsha 410082,China).

Abstract:This paper constructs a Bayesian dynamic panel data model to address uncertain risk of inference in random coefficient, sets the corresponding prior distribution, and uses the Bayesian theorem to infer the posterior distribution of the parameters. In order to investigate the regional structure of China's export trade, we calculate the indicators export competitiveness (ECI) to measure the regional structure of China's export trade, and then conduct an empirical analysis. The results show that the Bayesian dynamic panel regression model based on Gibbs sampling algorithm can effectively capture the characteristics of the path dependence in export competitiveness of all regions. In addition, the effect of the FDI on the export competitiveness will have a lag, while the impact of the exchange rate fluctuations on the export competitiveness has obvious regional differences.

Key words:Export Trade;Dynamic Random Effects;Bayesian Analysis;Foreign Direct Investment (FDI);Exchange Rate Fluctuation

猜你喜欢

汇率波动出口贸易
以A企业为例浅析外汇风险及防范方法
人民币汇率与上证指数互动的实证研究
浅析我国对外贸易的转变及对策
广东高乐玩具股份有限公司出口现状及对策分析
变化中的“生产率悖论”
江苏省出口产品结构优化升级
山东省农产品出口贸易的问题分析