APP下载

水相中碱促进的2-氨基苯并噁唑衍生物的合成*

2014-06-23赵娜俞丹刘亮汪飞李佳张武

合成化学 2014年2期
关键词:氰酸酯衍生物苯酚

赵娜,俞丹,刘亮,汪飞,李佳,张武

(安徽师范大学化学与材料科学学院,安徽 芜湖 241000)

水相中碱促进的2-氨基苯并噁唑衍生物的合成*

赵娜,俞丹,刘亮,汪飞,李佳,张武

(安徽师范大学化学与材料科学学院,安徽 芜湖 241000)

4-取代邻氨基苯酚(1)与取代异硫氰酸酯(2)在NaHCO3促进下,通过“一锅法”合成了16个2-氨基苯并噁唑衍生物(其中11个为新化合物),其结构经1H NMR,13C NMR和HR-MS表征。最佳反应条件为:1 0.5 mmol,2 1.2 eq,NaHCO32 eq,H2O为溶剂,于80℃反应2 h,产率最高达96%。

邻氨基苯酚;异硫氰酸酯;一锅法;合成

2-氨基苯并噁唑衍生物是一类重要的杂环化合物,在医药领域具有潜在的应用价值。如2-氨基苯并噁唑羧酰胺可以用于治疗化疗导致的恶心和呕吐,治疗腹泻型肠易激综合征[1]。5-HT3受体抗结剂[2]和抗癌试剂A(Chart 1)[3]等均以2-氨基苯并噁唑为核心骨架。因此,如何发展新颖、高效的2-氨基苯并噁唑类化合物的合成方法引起了医药、化学工作者们的广泛关注。

本文在无金属催化剂和配体的条件下,以水为溶剂,通过4-取代邻氨基苯酚(1a,1l和1n)与取代异硫氰酸酯(2a~2k)在NaHCO3促进下的“一锅法”,成功合成了16个2-氨基苯并噁唑衍生物(3a~3p,Scheme 1),其中3b,3c,3e~ 3h,3k~3m,3o和3p为新化合物,其结构经1H NMR,13C NMR和HR-MS表征。

与文献[4~7]方法相比,该方法简单、高效、绿色环保,避免了有机溶剂的使用且无需过渡金属和配体存在。

1 实验部分

1.1 仪器与试剂

X-4型显微熔点仪(温度未校正);AV 300 MHz型核磁共振仪(CDCl3为溶剂,TMS为内标);Agilent 6200 LC/MS TOF型高分辨质谱仪(ESI源电离)。

2b~2f和2i~2k按文献[8,9]方法制备;其余所用试剂均为分析纯。

1.2 3a~3p的合成(以3a为例)

在反应瓶中加入邻氨基苯酚(1a)54 mg (0.50 mmol),异硫氰酸酯(2a)72μL(1.2 eq),碳酸氢钠84 mg(2 eq)及蒸馏水4 mL,搅拌下回流(80℃)反应2 h。冷却至室温,用乙酸乙酯(2 ×10 mL)萃取,合并有机层,用无水硫酸镁干燥,浓缩后经硅胶柱层析[洗脱剂:V(石油醚)∶V(乙酸乙酯)=5∶1]纯化得2-氨基苯并噁唑(3a)。

用类似的方法合成3b~3p。

3a:白色固体,收率96%,m.p.174℃~175℃(172℃~174℃[5]);1H NMRδ:7.62(d,J= 8.1 Hz,2H),7.50(d,J=7.8 Hz,1H),7.44~7.36(m,3H),7.26(t,J=7.5 Hz,1H),7.17~7.11(m,2H);13C NMRδ:158.5,147.9,142.1,137.9,129.4,124.3,123.4,121.8,118.6,117.0,109.2。

3b:白色固体,收率73%,m.p.105℃~106℃;1H NMRδ:7.96(d,J=7.9 Hz,1H),7.41 (d,J=7.6 Hz,1H),7.18~7.32(m,4H),7.10(t,J=6.7 Hz,2H),2.37(s,3H);13C NMRδ:159.2,148.0,142.4,136.0,130.8,128.6,127.2,124.6,124.2,121.7,121.4,117.0,109.1,17.9;HR-MS m/z:Calcd for C14H12N2O{[M+H]+}225.102 7,found 225.102 8。

3c:白色固体,收率60%,m.p.178℃~179℃;1H NMRδ:7.47(d,J=6.4 Hz,3H),7.32 (d,J=7.7 Hz,1H),7.18(d,J=7.5 Hz,3H),7.09(t,J=7.5 Hz,1H),2.33(s,3H);13C NMR δ:158.5,147.9,142.4,135.2,133.1,129.9,124.2,121.7,118.7,117.0,109.0,20.8;HR-MS m/z:Calcd for C14H12N2O{[M+H]+}225.102 7,found 225.102 7。

3d:淡黄色固体,收率42%,m.p.194℃~196℃(198℃[5]);1H NMRδ:7.68(s,1H),7.35(d,J=7.5 Hz,1H),7.30~7.28(m,1H),7.21~7.18(m,4H),7.08(t,J=7.5 Hz,1H),2.38(s,6H);13C NMRδ:160.8,148.6,142.7,136.1,134.1,128.6,127.6,124.0,121.0,116.5,109.1,18.4。

3e:白色固体,收率63%,m.p.147℃~149℃;1H NMRδ:8.28(s,1H),7.49(d,J=8.7 Hz,2H),7.43(d,J=7.5 Hz,1H),7.32(d,J=7.5 Hz,1H),7.21(t,J=7.5 Hz,1H),7.10 (d,J=7.5 Hz,1H),6.94(d,J=8.7 Hz,2H),4.04(q,J=6.9 Hz,2H),1.42(t,J=6.9 Hz,3H);13C NMRδ:159.2,155.5,148.0,142.3,130.8,124.2,121.5,120.9,116.7,115.2,109.1,63.8,14.9;HR-MS m/z:Calcd for C15H14N2O2{[M+H]+}255.113 3,found 255.113 3。

3f:淡粉色固体,收率61%,m.p.197℃~199℃;1H NMRδ:10.75(s,1H),7.77(d,J= 8.1 Hz,2H),7.40~7.49(m,4H),7.21(t,J= 7.5 Hz,1H),7.12(t,J=7.5 Hz,1H);13C NMRδ:158.1,147.4,142.6,138.2,129.3,126.1,124.5,122.4,119.5,117.2,109.5; HR-MS m/z:Calcd for C13H9N2OCl{[M+H]+} 245.048 1,found 245.048 1。

3g:白色固体,收率54%,m.p.223℃~224℃;1H NMRδ:11.22(s,1H),7.94(d,J=8.7 Hz,2H),7.85(d,J=7.2 Hz,2H),7.54(t,J=7.2 Hz,2H),7.28(t,J=7.2 Hz,1H),7.20 (t,J=7.2 Hz,1H);13C NMRδ:157.5,147.4,143.3,142.3,134.0,124.8,122.9,119.7,118.0,117.6,109.8,104.0;HR-MS m/z:Calcd for C14H9N3O{[M+H]+}236.084 2,found 236.084 2。

3h:白色固体,收率92%,m.p.185℃~187℃;1H NMR(DMSO-d6)δ:11.08(s,1H),7.95 (d,J=8.4 Hz,2H),7.73(d,J=8.7 Hz,2H),7.51(t,J=6.9 Hz,2H),7.25(t,J=6.9 Hz,1H),7.16(t,J=8.4 Hz,1H);13C NMR(DMSO-d6)δ:157.8,147.4,142.7,142.4,126.8,126.8,124.7,122.7,122.5(q,JCF=31.5 Hz),117.8,117.5,109.7;HR-MS m/z:Calcd for C14H9F3N2O{[M+H]+}279.074 5,found 279.074 5。

3i:白色固体,收率21%,m.p.110℃~111℃(122℃~124℃[5]);1H NMRδ:7.34~7.43 (m,5H),7.27(t,J=7.0 Hz,2H),7.19(t,J=7.2 Hz,1H),7.07(t,J=7.2 Hz,1H),6.54 (s,1H),4.71(s,2H);13C NMRδ:162.3,148.5,142.8,137.8,128.8,127.8,127.6,124.0,120.8,116.2,108.8,46.9。

3j:淡黄色固体,收率14%,m.p.106℃~107℃(108℃~111℃);1H NMRδ:7.34(d,J=7.5 Hz,1H),7.21(d,J=7.8 Hz,1H),7.13(t,J=7.5 Hz,1H),6.99(t,J=7.5 Hz,1H),4.92(d,J=5.1 Hz,1H),3.74(d,J=6.9 Hz,1H),2.11(d,J=10.8 Hz,2H),1.61~1.77(m,3H),1.19~1.48(m,5H);13C NMR δ:161.4,148.4,143.1,123.8,120.6,116.2,108.6,52.0,33.4,25.5,24.7。

3k:淡黄色固体,收率49%,m.p.59℃~60℃;1H NMRδ:7.35(d,J=7.5 Hz,1H),7.24 (d,J=7.8 Hz,1H),7.15(t,J=7.5 Hz,1H),7.02(t,J=7.8 Hz,1H),5.31(s,1H),3.47 (d,J=7.8 Hz,2H),1.63~1.70(m,2H),1.25(s,18H),0.88(t,J=6.7 Hz,3H);13C NMRδ:162.2,148.5,143.1,123.8,120.7,116.2,108.6,43.2,31.9,29.7,29.63,29.57,29.5,29.34,29.27,26.9,26.8,22.7,14.1;HRMS m/z:Calcd for C19H30N2O{[M+H]+}303.243 6,found 303.243 6。

3l:白色固体,收率53%,m.p.178℃~179℃;1H NMRδ:7.76(s,1H),7.46(d,J=8.1 Hz,2H),7.23(d,J=6.0 Hz,1H),7.16(d,J=7.8 Hz,1H),6.89(t,J=8.4 Hz,3H),4.01 (q,J=6.6 Hz,2H),2.39(s,3H),1.40(t,J=6.6 Hz,3H);13C NMRδ:159.2,155.4,146.1,142.4,133.9,130.9,122.2,120.8,117.1,115.2,108.4,63.8,21.6,14.9;HR-MS m/z:Calcd for C16H16N2O2{[M+H]+}269.129 0,found 269.129 1。

3m:白色固体,收率86%,m.p.219℃~220℃;1H NMR(DMSO-d6)δ:11.01(s,1H),7.93(d,J=8.1 Hz,2H),7.71(d,J=8.1 Hz,2H),7.36(d,J=8.1 Hz,1H),7.29(s,1H),6.95(d,J=8.1 Hz,1H),2.36(s,3H);13C NMR(DMSO-d6)δ:157.9,145.6,142.8,142.6,133.8,130.4,126.8(d,3JCF=3.8 Hz),123.3,122.4(q,1JCF=31.5 Hz),119.6,117.7 (d,2JCF=3.8 Hz),109.0,21.5;HR-MS m/z: Calcd for C15H11N2OF3{[M+H]+}293.090 1,found 293.090 1。

3n:白色固体,收率90%,m.p.106℃~107℃;1H NMR(DMSO-d6)δ:10.77(s,1H),7.73 (d,J=8.1 Hz,2H),7.49(d,J=8.1 Hz,1H),7.36(t,J=7.8 Hz,2H),7.13(dd,J=8.4 Hz,1.8 Hz,1H),7.04(t,J=7.5 Hz,1H);13CNMR(DMSO-d6)δ:159.6,146.3,144.5,138.8,129.5,128.6,122.9,121.7,118.3,116.8,110.5。

3o:白色固体,收率70%,m.p.181℃~182℃;1H NMRδ:7.93(s,1H),7.43(d,J=8.1 Hz,2H),7.36(s,1H),7.19(d,J=8.1 Hz,1H)7.03(d,J=8.1 Hz,1H),6.92(d,J=8.1 Hz,2H),4.02(q,J=6.6 Hz,2H),1.40(t,J=6.6 Hz,3H);13C NMRδ:160.0,155.8,146.6,143.7,130.2,129.5,121.4,121.2,116.9,115.2,109.6,63.8,14.8;HR-MS m/z: Calcd for C15H13N2O2Cl{[M+H]+}289.074 4,found 289.074 4。

3p:淡黄色固体,收率96%,m.p.231℃~233℃;1H NMR(DMSO-d6)δ:11.20(s,1H),7.91(d,J=8.4 Hz,2H),7.71(d,J=7.8 Hz,2H),7.51(d,J=9.9 Hz,2H),7.16(d,J=8.4 Hz,1H);13C NMR(DMSO-d6)δ:159.0,146.3,144.0,142.4,130.3,128.8,126.8(2JCF=3.8 Hz),123.1(1JCF=31.5 Hz),122.3,118.0,117.1,110.8;HR-MS m/z:Calcd for C14H8N2OF3Cl {[M+H]+}313.035 5,found 313.035 5。

2 结果与讨论

2.1 反应温度和时间对反应的影响

本课题组已报道过用水作溶剂的绿色合成方法[10,11]。遵循此理念,本文尝试继续使用水为溶剂,并得到了理想的结果。

1 0.5 mmol,水为溶剂,其余反应条件同1.2,考察反应温度和时间对反应的影响,结果见表1。由1表可知,随着温度的升高产率明显增高;当温度为80℃时产率最高(96%);继续升高温度,产率升高幅度甚小。反应温度以80℃为宜。

从表1还可以看出,反应时间对产率也有较大的影响。反应时间由2 h降至1 h时,产率从96%降至33%。

表1 反应温度和时间对反应的影响*Tab le 1 Effect of temperature and time on reaction

2.2 碱对反应的影响

1 0.5 mmol,2 1.2 eq,水为溶剂,于80℃反应2 h,考察碱对反应的影响,结果见表2。表2表明,其他碱也可促进反应的进行,但产率中等;有机碱1,4-二氮杂二环[2.2.2]辛烷(DABCO)和Et3N也可得到较理想的收率,但从经济效率和环境友好角度考虑,选择NaHCO3为最佳碱。

同时也考察了NaHCO3用量对反应的影响,实验结果表明:NaHCO3的用量2.0 eq降至1.0 eq时,收率有所下降;不加碱时,产率明显降低。说明碱在合成3中起着至关重要的作用。

表2 碱对反应的影响*Tab le 2 Effect of base on reaction

综上所述,合成2-氨基苯并噁唑衍生物的最佳反应条件为:1 0.5 mmol,2 1.2 eq,NaHCO32 eq,H2O为溶剂,于80℃反应2 h,产率96%。

3 结论

以4-取代邻氨基苯酚和取代异硫氰酸酯为原料,简单、快速、高效的合成了2-氨基苯并噁唑衍生物。该方法条件温和,操作简单,无需过渡金属催化剂及配体的参与,仅使用廉价的无机碱就可高效的促进反应的进行,从而降低反应成本,并且反应溶剂为水,环境友好,后处理简单,这也为工业、医学等领域中合成2-氨基苯并噁唑类中间体奠定了理论和实践基础。

[1]阿尔巴尼分子研究公司.作为5HT3调节剂的2-氨基苯并噁唑羧酰胺[P].US 200 780 036 671,2009.

[2]Yoshida S,Shiokawa S,Kawano K,etal.Orally active benzoxazole derivative as 5-HT3receptor partial agonist for treatment of diarrhea-predominant irritable bowel syndrome[J].JMed Chem,2005,48:7075-7079.

[3]Easmon J,Pürstinger G,Thies K S,et al.Synthesis,structure-activity relationships,and antitumor studies of2-benzoxazolyl hydrazones derived from alpha-(N)-acylheteroaromatics[J].JMed Chem,2006,49:6343-6350.

[4]Tian Z P,Plata D J,Wittenberger S J,et al.Ageneral synthesis of N-aryl-and N-alkyl-2-aminobenzoxazoles[J].Tetrahedron Letters,2005,46:8341-8343.

[5]Yella R,Patel B K.One-pot synthesis of five and six membered N,O,S-heterocycles using a ditribromide reagent[J].JComb Chem,2010,12:754-763.

[6]Cee V J,Downing N S.A one-potmethod for the synthesis of 2-aminobenzimidazoles and related heterocycles[J].Tetrahedron Letters,2006,47:3747-3750.

[7]Zhang X Y,Jia X F,Wang JJ,et al.An economically and environmentally sustainnable synthesis of2-aminobenzothiazoles and 2-aminobenzoxazoles promoted by water[J].Green Chemistry,2011,13:413-418.

[8]Emami S,Foroumadi A.Synthesis of 4-(4-methylsulfonylphenyl)-3-phenyl-2(3H)-thiazole thione derivatives as new potential COX-2 inhibitors[J].Chin J Chem,2006,24:791-794.

[9]Nath J,Ghosh H,Yella R,et al.Moleculariodinemediated preparation of isothiocyanates from dithiocarbamic acid salts[J].Eur JOrg Chem,2009,12:1849-1851.

[10]ZhangW,Qi H L,Li L S,et al.Hydrothermal heck reaction catalyzed by Ni nanoparticles[J].Green Chem,2009,11:1194-1200.

[11]ZhangW,Yue Y,Yu D,et al.1,10-phenanthrolinecatalyzed tandem reaction of 2-iodoanilines with isothiocyanates in water[J].Adv Synth Catal,2012,(354):2283-2287.

Base Promoted Synthesis
of 2-Am inobenzoxazole Derivatives in W ater

ZHAO Na,YU Dan,LIU Liang,WANG Fei,LIJia,ZHANGWu
(College of Chemistry and Materials Science,Anhui Normal University,Wuhu 241000,China)

Sixteen 2-aminobenzoxazole derivatives(eleven of them were novel compounds)were synthesized by a base-promoted one-pot reaction of4-substituted 2-aminophenols(1)with substituted isothiocyanates(2)in water.The structureswere characterized by1H NMR,13CNMR and HR-MS.The highest yield was96%under optimum reaction conditions(1 was0.5 mmol,2 was 1.2 eq,NaHCO3was 2 eq,at80℃for 2 h).

2-aminophenol;isothiocyanate;one-pot;synthesis

O626.24

A

1005-1511(2014)02-0200-04

2013-11-11

国家自然科学基金资助项目(20972002,21272006)

赵娜(1988-),女,汉族,黑龙江齐齐哈尔人,硕士研究生,主要从事杂环化合物的合成研究。E-mail:328260226@ qq.com

张武,教授,Tel.0553-3883513,E-mail:zhangwu@mail.ahnu.edu.cn

猜你喜欢

氰酸酯衍生物苯酚
新能源汽车用胶粘剂的改性与性能研究
毛细管气相色谱法测定3-氟-4-溴苯酚
烃的含氧衍生物知识链接
顶空进样气相色谱-质谱法测定山葵中异硫氰酸酯
双酚A型氰酸酯泡沫塑料的制备与性能
喜树碱衍生物的抗肿瘤研究进展
负载型催化剂(CuO/TUD-1,CuO/MCM-41)的制备及其在一步法氧化苯合成苯酚中的应用
新型螺双二氢茚二酚衍生物的合成
Xanomeline新型衍生物SBG-PK-014促进APPsw的α-剪切
4-(2,4-二氟苯基)苯酚的合成新工艺