APP下载

试析电力工程中技术在智能电网建设中的应用

2014-05-26王雪凤

世纪之星·交流版 2014年10期
关键词:电力工程技术智能电网电气自动化

王雪凤

[摘 要]对智能电网的建设现状以及发展的趋势进行了分析,阐述了我国智能电网的技术特点。由于智能电网具有数字化、信息化等重要特點,因此电力工程技术是智能电网建设的重要手段。 本文中主要针对这类电气自动化技术和其电力工程技术在智能电网中的应用进行了探讨。

[关键词]电力工程技术;电气自动化;智能电网;建设;应用

一、电力工程中电气自动化技术

1. 全控型电力电子开关逐步取代半控型晶闸管 50 年代末出现的晶闸管标志着运动控制的新纪元。它是第一代电子电力器件,在我国至今仍广泛用于直流和交流传动控制系统。由于目前所能生产的电流/电压定额和开关时间的不同,各种器件各有其应用范围。 GTR 的二次击穿现象以及其安全工作区受各项参数影响而变化和热容量小、过流能力低等问题,使得人们把主要精力放在根据不同的特性设计出合适的保护电路和驱动电路上,这也使得电路比较复杂,难以掌握。 MOS 控制晶闸管( MCT )是一种在它的单胞内集成了 MOSFET的品闸管,利用M OS 门来控制品闸管的开通和关断,具有晶闸管的低通态电压降,但其工作电流密度远高 IGBT和 GTR ,在理论上可制成几千伏的阻断电压和几十千赫的开关频率,且其关断增益极高。

2. 变换器电路从低频向高频方向发展随着电力电子器件的更新,由它组成的变换器电路也必然要换代。应用普通晶闸管时,直流传功的变换器主要是相控整流,而交流变频船动则是交一直一交变频器。当电力电子器件进入第二代后,更多是采用PWM 变换器了。采用PWM方式后,提高了功率因数,减少 了高次谐波对电冈的影响,解决了电动机在低频区的转矩脉动问题。

3. 交流调速控制理论日渐成熟 1971 年,德国学者 F , Blaschke 发表论文阐明了交流电机磁场定向即矢量控制的原理,为交流传动高性能控制奠定了理论基础。矢量控制的基本思想是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。它需要检测转子磁链的方向,且其性能易受转子参数,特别是转子回路时间常数的影响。加上矢量旋转变换的复杂性,使得实际的控制效果难于达到分析的结果。 1985 年德国鲁尔大学的 Depenbrock 教授首次提出了直接转矩控制的理论,接着 1987 年又把它推 广到弱磁调速范围。大致来说,直接转矩控制,用空间矢量的分析方法,直接在定子坐标系下分析计算与控制电流电动机的转矩。采用定子磁场定向,借助于离散的两点式调节(Band 一 Band 控制)产生 PWM 信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。

4. 通用变频器开始大量投入实用从产品来看,第一代是普通功能型 U / F 控制型,多采用 16 位 CPU ,第二代为高功能型 U /F 型,采用 32位DSP或双 16 位CPU 进行控制,采用了磁通补偿器、转差补偿器和电流限制拄制器.具有挖土机和“无跳闸”能力,也称为“无跳闸变频器”。这类变频器目前占市场份额最大。第三代为高动态性能矢量控制型。

5. 单片机、集成曳路及工业控荆计算机的发展以 MCS-51为代表白 8 位机虽然仍占主导地位,但功能简单,指令集短小,可靠性高,保密性高,适于大批量生产的 PIC系列单片机及CMS97C系列单片机等正在推广,而且单片机的应用范围已开始扩展至智能仪器仪表或不太复杂的工业控制场合以充分发挥单片机的优势另外,单片机的开发手段也更加丰富。在集成电路方面,需要重点说明的是集成模拟乘法器和集成锁相环路及集成时基电路在自动控制系统中运用很广。

二、智能电网概述

目前,全世界范围内的气候变化越来越频繁,且由于人口的剧增,能源的供应也越来越紧缺,因此,智能电网在全球中不断地被关注。在几年前,美国政府为了恢复经济的良好运行,将智能电网的建设作为核心策略,来解决由于能源引起的危机,并利用它来促进其他产业的健康发展。在我国,智能电网的建设更是一项紧急的任务。

三、电力工程技术在智能电网建设中的总体应用

第一,电源领域的应用。电力工程技术能够为智能电网的各种设备提供不同的电源。具体包括直流、变频以及恒频的交流电源等。例如,在蓄电池充电中,一般是采用直流电源,在变电所的操作中,既可以采用直流电源,也能用交流电源,而在大型或者小型的计算机中,可以采用高频的开关电源。

第二,输电中的应用。由于智能电网要求具有较高质量的电能以及较为稳定的电网工作状态,而实现这些要求需要电力工程技术中的谐波抑制技术以及无功补偿技术的支持和配合。另外,电力工程中也不断出现新的装置,这些功能和智能电网的建设要求相符合,因此,能够在智能电网建设中加以应用。

第三,发电中的应用。电力工程技术是一种现代的新技术,它通过电力和电子设备,实现电能的转化以及控制,大大降低了能量的消耗量,同时还能减少机电设备的使用,工作效率也因而提高。

四、电力工程技术在智能电网建设中的具体应用

第一,电能的质量优化技术。该技术在智能电网建设中的应用,需要建立在电能的质量等级划分以及评估方法体系的完善的基础上,对供用电的接口所具备的经济性能进行分析,从而建立起用户经济性以及技术等级这两个评估体系,并借助法律法规的不断完善,来促使智能电网的建设往经济且优质的方向发展。

第二,柔性交流输电技术。该技术是将清洁度高的新能源等输入电网中的主要技术,它是在微处理以及微电子技术,电力技术、电子技术以及相关的通信和控制技术的基础上形成的能够对交流输电实现灵活控制的技术。

第三,高压直流输电技术。当前的直流输电系统中,很多环节都采用交流电,但是输电过程是用直流电的。采用该技术能够利用控制换流器,实现整流或者逆变的工作状态。能够应用在远距离或者近距离直流输电工程中,还能为一些孤立的地域例如海岛供电。

第四,能源转换技术。未来社会中的能源发展方向应该是实现低碳经济能源。也就是将能源的消耗量以及对环境的排放和污染控制在最低水平上,低碳经济能源的核心是在能量的转换上采用先进技术对其进行创新,实现能源的高效利用。目前,太阳能与风能等自然能源已经成了世界上利用最多的用于能量转换的能源。

五、电力工程技术在智能电网中的重要意义

在电力系统方面,能够降低总发电所需要的燃料费用,这样就能够在一定程度上降低成本,减少建设投资,电网的输送效率也会有所提升。

在用电客户方面,可以提供比较便捷的服务,不仅终端能源的利用效率大大的提高,而且电量消费也能够节约利用,供电可靠性和稳定性也会大幅度的提高,电能的质量也会有所改善。

在环境与节能方面,可以在提高能源转换效率,节能减排的同时,促进清洁能源的创新与开发,除此之外土地的整体利用率也会有所提升。

其他方面,主要就是对我国社会生活以及国家经济的有利影响,能够促进我国经济的协调可持续发展,同时拉动就业,缓解就业压力,有利于社会的稳定。能源供应方面也能够保障其安全性,能源转换效率也会有所提高,交通运输压力就会相应的减轻。

实际上我国还是一个发展中国家,就技术而言,还需要有很大的提升,所以在经济全球化的今天要真正的发展技术,提高我国的智能电网建设质量,就需要充分利用经济全球化这把双刃剑,充分利用国际国内两种市场两种资源,有效地规避不利因素来发展自己。只有电力工程技术不断地发展和创新,才能够促进我国电力事业的进步。当然专业性的人才也是必不可少的,不仅要加强我国的教育事业,培养动手能力比较强,理论知识比较丰富的实干人才,同时也要引进国外具有丰富经验的国际人员,为我国的智能电网建设提供比较新鲜的元素,促进我国智能电网的健康发展。

六、结束语

众所周知,电气自动化技术是当今世界最活跃、最充满生机、最富有开发前景的综合性学科与众多高新技术的合成。其应用范围十分广泛,几乎渗透到国民经济各个部门,随着我国科技技术的发展,电气自动化技术也随之提高。本文通过对智能电网在我国建设中的发展趋势及特點的分析,提出了电力工程在智能电网建设中的重要应用,对在智能电网建设中的总体应用、具体技术应用以及关键技术的应用进行了探讨。通过实例表明,电力工程技术的应用,对于促进智能化电网的建设,优化能源结构以及提高经济效益具有重要作用。

参考文献:

[1]《中国智能电网基本特征及其技术进展评述》,常康,薛峰,杨卫东,《电力系统自动化》2009年17期

猜你喜欢

电力工程技术智能电网电气自动化
配电网电力工程技术问题分析及施工安全分析
电力工程技术在智能电网建设中的应用探析
电气自动化在电气工程中的应用
智能电网中光纤通信系统的可靠性分析
变电站电气自动化中分散控制系统的应用
智能电网现状与发展分析
关于电气自动化在机械采煤中的应用研究