3三角函数与平面向量
2014-05-12
三角函数与平面向量交汇的试题屡见不鲜,颇为流行,呈现方式可大(解答题)可小(填空题和选择题). 若是小题,一般难度不大,主要考查基本概念和基本公式,是送分题;若是大题,则对基本公式的理解记忆能力、变形能力、运算能力等提出了一定的要求.
(1)明确方向,把握复习尺度:平面向量的数量积及平面向量的应用,这部分知识属基础知识,一般不会考查的太难,若难度大也是难在其他知识上,所以这部分的复习备考应把握好尺度,立足基础,突出对基本概念、基本运算的理解、运用上.
(2)加强通性通法的能力训练:用好题中的数量积等式并进行等价转化、注意数形结合,建立适当的数学模型就可轻松解决这类问题.
解答三角函数与平面向量交汇的试题时,一定要熟悉向量的数量积的定义和性质,合理选用向量数量积的运算法则构建相关等式,然后运用与此相关的三角函数知识点进行解题,并要注意方程思想的运用.endprint
三角函数与平面向量交汇的试题屡见不鲜,颇为流行,呈现方式可大(解答题)可小(填空题和选择题). 若是小题,一般难度不大,主要考查基本概念和基本公式,是送分题;若是大题,则对基本公式的理解记忆能力、变形能力、运算能力等提出了一定的要求.
(1)明确方向,把握复习尺度:平面向量的数量积及平面向量的应用,这部分知识属基础知识,一般不会考查的太难,若难度大也是难在其他知识上,所以这部分的复习备考应把握好尺度,立足基础,突出对基本概念、基本运算的理解、运用上.
(2)加强通性通法的能力训练:用好题中的数量积等式并进行等价转化、注意数形结合,建立适当的数学模型就可轻松解决这类问题.
解答三角函数与平面向量交汇的试题时,一定要熟悉向量的数量积的定义和性质,合理选用向量数量积的运算法则构建相关等式,然后运用与此相关的三角函数知识点进行解题,并要注意方程思想的运用.endprint
三角函数与平面向量交汇的试题屡见不鲜,颇为流行,呈现方式可大(解答题)可小(填空题和选择题). 若是小题,一般难度不大,主要考查基本概念和基本公式,是送分题;若是大题,则对基本公式的理解记忆能力、变形能力、运算能力等提出了一定的要求.
(1)明确方向,把握复习尺度:平面向量的数量积及平面向量的应用,这部分知识属基础知识,一般不会考查的太难,若难度大也是难在其他知识上,所以这部分的复习备考应把握好尺度,立足基础,突出对基本概念、基本运算的理解、运用上.
(2)加强通性通法的能力训练:用好题中的数量积等式并进行等价转化、注意数形结合,建立适当的数学模型就可轻松解决这类问题.
解答三角函数与平面向量交汇的试题时,一定要熟悉向量的数量积的定义和性质,合理选用向量数量积的运算法则构建相关等式,然后运用与此相关的三角函数知识点进行解题,并要注意方程思想的运用.endprint