制药行业水污染环境影响评价及防治措施分析
2014-04-20牟真
牟真
(中国科学院生态环境研究中心,北京100085)
1 引言
制药行业是我国国民经济的重要基础产业和发展最快的行业之一,其主要分类包括:化学原料药及制剂、中药材、中药饮片、中成药、抗生素、生物制品、生化药品、放射性药品等[1]。根据《环境影响评价技术导则-制药建设项目》(HJ 611-2011)[2],为方便有针对性的开展环境影响评价工作,将制药行业分为以下生产类别:化学药品制造、生物生化制品制造、中药饮片加工和中成药制造、单纯药品分装和复配。制药行业属于精细化工,其特点是工艺流程复杂、使用的原料种类众多、原材料利用率低、副产物多,因此导致制药废水组成十分复杂,有机污染物种类多、浓度高,COD和BOD5值高,NH3-N浓度高,色度深、毒性大,固体悬浮物SS浓度高等特征[3]。
根据统计,制药行业废水排放量较大,约占全国工业企业污水排放量的2%。大量制药废水的排放对于其受纳对象,无论是地表水体还是污水处理厂,都会产生不小的影响。因此,合理分析制药行业的水污染排污节点和污染因子,把握行业生产特征,提出切实可行的污染防治措施对于有效开展制药行业环境影响评价工作非常重要,对于落实环境保护政策和促进制药行业实现社会、环境、经济“三合一”效益具有积极的作用。
2 制药废水组成及特点
2.1 化学制药废水组成、污染因子及特点
化学制药是采用化学方法将有机物质或无机物质通过化学反应生产化学药品及化学原料药的生产过程。主要产品包括合成抗菌药、麻醉药、镇静催眠药、抗癫痫药、抗精神失常药、解热镇痛药、抗肿瘤药等16个种类约近千个品种。
2.1.1 废水组成
(1)生产过程排水。包括各类结晶母液、转相母液、吸附废液、溶剂回收残液及其药物残留等。
(2)辅助工程排水。包括循环冷却水系统排水、水环真空泵排水、纯化水制备过程排水、蒸馏(加热)设备冷凝水排水等。
(3)冲洗排水。包括容器设备清洗排水(如提取罐冲洗排水)、过滤设备冲洗排水、地面冲洗排水、厂房清洁排水等。
(4)化验室及实验室排水。包括药品检验或新产品实验过程排水[4]。
2.1.2 主要污染因子及排污特点
根据调查结果[3],化学制药类企业生产废水中的污染物主要是常规污染物,即COD、BOD、SS、pH值、色度、氨氮等污染物。化学制药废水的特点是:用水量大,有机污染严重,排水为间歇排放。废水成分复杂,含有未参与反应的反应物、生成物、残留溶剂、催化剂、无机盐(副产物)等;废水可生化性较差,BOD、COD和TSS浓度高,流量大。pH值变化大,波动范围为1.0~11.0。
2.2 生物生化制药废水组成、污染因子及特点
生物生化制药是利用生物体及生物生命活动来制造药品的生产过程,包括发酵制药、提取制药、生物技术制药。
发酵制药是指通过微生物的生命活动,将有机原料经发酵、过滤、提纯等工序制成药品的生产过程。主要产品包括抗生素类、维生素类、氨基酸类、有机酸类、酶类等药物。
提取制药是指运用物理、化学、生物化学的方法,将生物体中其重要生理作用的活性物质经过提取、分离、纯化等手段制造成药品的生产过程。主要产品包括氨基酸类、多肽及蛋白质类、酶类、核酸类、糖类、脂类等药物。
生物技术制药是利用微生物、寄生虫、动物毒素、生物组织等,采用现代生物技术(主要是基因工程技术等)制取多肽和蛋白质类药物、疫苗等的生产过程。主要产品包括干扰素、胰岛素、疫苗等。
2.2.1 制药废水组成
(1)生产过程排水。包括发酵残液、破乳剂、废滤液、废母液、其他母液、溶剂回收残液等。
(2)辅助工程排水。包括工艺冷却水、动力设备冷却水、循环冷却水系统排污、去离子水设备过程排水等[5]。
(3)冲洗排水。包括容器设备清洗排水、过滤设备冲洗排水、树脂柱冲洗水、地面冲洗排水、厂房清洁排水等[6]。
(4)化验室及实验室排水。包括药品检验或新产品实验过程排水。
2.2.2 主要污染因子及排污特点生物制药类企业生产废水中的污染物主要是常规污染物,即COD、BOD、SS、pH、氨氮、动植物油等污染物。生物制药废水的特点是:成分复杂,有机物浓度高,溶解性和胶体性固体浓度高,pH值经常变化,温度较高,带有颜色和气味,悬浮物含量高易产生泡沫。含有难降解物质和有抑菌作用的抗生素且有毒性等[6]。
2.3 中药饮片加工和中成药制药废水组成、污染因子及特点
中药饮片加工和中成药制药是以药用植物和药用动物为主要原料,根据我国要点生产中成药饮片和中成药的制药过程。中药饮片是指根据辨证施治及调配或制剂的需要,对经产地加工的净药材进一步切割、炮制而成的成品。中成药是指任何用于传统中医治疗的任何剂型的药品,它是以中药饮片为原料生产的。
2.3.1 废水组成
(1)生产过程排水。包括药材清洗和浸泡水、炮制工段废水、下脚料清洗水、提取工段废水。
(2)冲洗排水。包括容器设备清洗排水、安瓶清洗排水、地面冲洗排水、厂房清洁排水等。
2.3.2 主要污染因子及排污特点
根据调查结果[7],中药类企业生产废水中的污染物主要是常规污染物,即COD、BOD、SS、pH等污染物。中药类制药废水的特点是:水质成分复杂,废水中溶解性物质、胶体和固体物质浓度都很高。COD、SS浓度高,BOD/COD>0.5,废水易降解。水量间歇排放,水质波动较大,pH值波动较大,排水水温较高,并带有颜色和气味。
2.4 单纯药品分装与复配制药废水组成、污染因子及特点
单纯药品分装与复配制药是通过混合、加工和配制,将药物活性成分和辅料职称剂型药物的生产过程。主要包括固体制剂和注射制剂两种。固体制剂按照剂型可分为片剂、胶囊剂、颗粒剂等。
注射制剂是指将药物制成供注入人体内的灭菌溶液、乳浊液或混悬液,以及供临用前配成溶液或混悬液的无菌粉末。主要有溶液型注射剂和无菌粉末注射剂。溶液型注射剂所用的溶剂主要有注射用水、注射用油、以及乙醇、甘油等注射用剂。无菌粉末注射剂分为无菌分转粉针剂和冻干粉针剂。
2.4.1 废水组成
单纯药品分装与复配制药无严格意义上的工艺废水产生,主要废水主要包括包装容器清洗排水、设备清洗排水、安瓶、输液瓶、胶塞清洗排水、地面冲洗排水、厂房清洁排水、纯化水/注射水制备过程排水、灭菌检漏用废水等。
2.4.2 主要污染因子及排污特点
根据调查结果[8],单纯药品分装与复配制药企业生产废水中的污染物主要是常规污染物,即COD、BOD、SS、pH等污染物。单纯药品分装与复配制药制药废水的特点是:由于医药行业的特殊性,生产中涉及的用水基本为纯化水或者是注射用水,因此废水中杂质含量极少,污染物浓度很低。固体制剂生产排水中COD浓度范围在68.1~1480mg/L,一般在500mg/L以下。BOD浓度范围在36.95~660mg/L,一般在300mg/L以下。SS浓度范围在68~700mg/L,一般在300mg/L以下。注射制剂生产排水中COD浓度范围在63.27~300mg/L,BOD浓度范围在30~80mg/L,SS浓度范围在51~85mg/L。
3 水污染防治措施
根据制药行业排水特点分析可知,制药废水成分复杂,大多是高浓度有机废水,废水可生化性较差、难降解,pH波动大。目前我国大多数制药企业内部均配建有污水处理设施,制药废水经处理达标后,方能排入地表水体或者是市政污水处理厂。根据文献调研,处理制药废水多采用组合工艺,其中生物处理方法作为主要处理工艺,物化处理工艺、化学处理工艺作为生物处理的预处理或后处理工序。
3.1 化学制药废水处理工艺
(1)Fe/C微电解+厌氧SBR工艺。王焕龙等[9]采用微电解+厌氧工艺处理高浓度制药废水。结果表明:Fe/C比为30为最佳,可以使BOD/COD由0.125提高到0.644,可生化性能得到显著提高;SBR生化处理中,污泥负荷控制在0.5kgCOD/kgMLSS/d左右,曝气6h时COD去除率达85%。
(2)吹脱+厌氧+好氧工艺。陈曦[10]采用吹脱+厌氧+好氧工艺对含有氯霉素、抗菌素增效剂和磺胺新诺明的合成制药废水进行处理。研究表明,经吹脱和厌氧水解酸化处理后,COD去除率为70%,再经好氧生化系统处理,COD去除率可达60%。COD总去除率达到89%。
(3)电解+中和曝气+UASB+A/O工艺。李亚峰等[11]采用电解+中和曝气+UASB+A/O工艺处理某药厂制药废水,废水中COD和BOD5初始浓度分别为4600mg/L和3300mg/L,废水主要含有丙酮、硝基苯磺酸钠、甲苯、三乙胺等有毒有害物质。运行结果表明,通过微电解可提高了废水的可生化性,同时还有良好的脱色效果。采用电解+中和曝气+UASB+A/O工艺处理高浓度制药废水具有良好的处理效果,出水COD和BOD5分别为115mg/L和20mg/L,去除率分别为97.5%和99.4%。
(4)混凝预处理+UASB+ABR+A/O+气浮工艺。王白杨等[12]采用混凝预处理+UASB+ABR+A/O+气浮工艺处理原料药废水。该类废水周期性排放,水质波动较大。高浓度废水排放量300m3/d,其中COD浓度为10000~25000mg/L,BOD5浓度为4000~12000mg/L;低浓度废水排放量1200m3/d,其中 COD浓度为1000~1200mg/L,BOD5浓度为300~500mg/L。研究结果表明,经采取上述工艺后,出水COD、BOD5去除率分别达到98.7%、98%,处理效果好。
3.2 生物生化制药废水处理工艺
3.2.1 电解+水解酸化+CASS工艺
李颖[13]采用电解+水解酸化+CASS工艺处理生物制药厂(主要产品为核黄素)废水。采用电解法对高浓度核黄素上清液进行预处理,然后与其他生产废水、生活污水混合,依次采用水解酸化、CASS工艺进一步处理。研究表明,电解预处理单元处理后,核黄素上清液的pH值由<1升至6~9,COD的浓度由17000mg/L降至4930mg/L,去除率高达71%。SS、色度去除率也分别达到83%、67%。
3.2.2 Fe-C处理工艺
任健等[14]采用Fe-C法预处理抗生素类生产废水,经过正交试验和单因素优化试验,确定铁碳体积比为3∶1,曝气量为100L/h,pH值为2.5,HRT为80min。在此操作条件下,废水的色度、COD去除率分别可达74.5%和48.7%,BOD5/COD可由最初的0.06~0.10升高至0.26。铁碳单元出水pH值为3.5~4.0。研究表明,以Fe-C作为预处理步骤,对于降低COD浓度,提高废水的可生化性具有显著作用。
3.2.3 Fenton试剂法+活性炭吸附工艺
祁佩时等[15]采用Fenton氧化-活性炭吸附协同处理工艺对抗生素制药废水二级生化出水进行了研究。结果表明:在温度为30℃,pH值为5,H2O2(30%)投加量为300mg/L,FeSO4/7H2O投加量为80mg/L,反应时间为120min,活性炭投加量为50mg/L且与Fenton试剂同时加入时,COD去除率可达68.5%,
3.2.4 湿法氧化法
湿式空气氧化技术是在较高温度(150~350℃)和压力(0.5~20MPa)下,以空气或纯氧为氧化剂将有机污染物氧化分解为无机物或小分子有机物的化学过程。一般湿法氧化的COD去除率不超过95%,湿法氧化出水不能直接排放,一般与生化处理系统联用。蒋展鹏等[16]分别以T-i Ce-Bi和CuO/Al2O3作为催化剂,考察了不同催化剂、反应温度、反应压力和废水的初始pH对催化湿式氧化处理VC制药废水的影响。试验结果表明:加入催化剂后废水的COD去除率可以提高23%左右,同时处理后废水的BOD5/COD从0.17提高到0.6以上。
3.3 中药、中成药制药废水处理工艺
3.3.1 吸附法
许淑青[17]采取活性炭吸附处理中药废水,研究表明,随着活性炭填柱高度的增加,活性炭吸附能力增强。当活性炭填柱高度为25cm时,COD浓度去除效率可达到95%。
3.3.2 接触氧化+水解酸化+SBR工艺
韩相奎等[18]采用接触氧化+水解酸化+SBR工艺处理中药废水。原水水质如下:pH值为5.7,COD、BOD5、NH4-N分别为1094、327、4.4mg/L。结果表明:接触氧化+水解酸化+SBR工艺对BOD5/COD值较低的中药废水可获得良好的出水水质,出水中COD可降至100mg/L以下。同时该工艺水解酸化段与好氧段的剩余污泥产率都很低,减少了污泥处置的麻烦。
3.3.3 ABR+SBR(厌氧折流板反应器+序批式活性
李红华等[19]采用ABR+SBR工艺处理中成药制药废水。运行结果表明,在进水质量浓度COD为438~2300mg/L,BOD5为310~824mg/L,SS为86~229 mg/L和色度为50~220倍时,处理后出水可达到《中药类制药工业水污染物排放标准》(GB 21906-2008)要求,该工艺操作简便、抗冲击负荷能力强、运行费用低。
3.3.4 气浮+SBR+滤池工艺
杨志勇等[20]采用气浮+SBR+滤池工艺处理制药废水。运行结果表明,该工艺处理效果稳定,耐冲击负荷能力高,不会发生污泥膨胀问题,出水COD≤100mg/L,BOD5≤30mg/L,SS≤70mg/L。而且该工艺运行费用较低,操作简单,易于维护。
4 制药行业制药废水环境影响评价中需注意的问题
4.1 开展工程分析,确定污染来源及组成
制药行业生产工艺复杂、用水量大、水污染物产生环节众多,因此在环评工作中认真落实工程分析、找到污染节点,对于准确把握污染物产生工序和污染因子、污染物排放规律和排放情况等具有重要的意义。
工程分析应按生产装置分析并描述工艺流程,包括原料配制、生产、污染物处理等,以及中间过程的物料流转、物料回收。重点弄清生产原理、原辅料投入节点、方式、工艺设备、工艺过程、工艺条件。
4.2 做好物料平衡和水平衡分析
制药行业生产过程中投入的原、辅料种类多,但是产品转化率低、副产品多、三废产生量大;同时制药行业用水量大、用水类型差异大。为了准确把握污染物产生和排放状况,必须进行物料衡算和水平衡计算。
4.3 污水处理措施的有效性、可行性分析
不同的制药类别,由于生产工艺的不同而导致其废水成分、污染物浓度各有不同。例如化学制药,由于其生产中使用较多的原辅材料,生产工艺中涉及化学合成、提取、缩合、水解等复杂工艺,因此导致其废水组成复杂,COD、BOD5、SS等浓度较高,废水的可生化性较差。而对于单纯药品分装与复配制药,由于生产中仅涉及简单的混合、稀释等工艺,严格意义上并不产生工艺废水,生产中排放的废水以设备清洗水为主,COD、BOD5、SS等浓度较低。对于不同的制药类别,要根据药厂实际情况选择经济、有效的污水处理措施,同时还需考虑污水处理设施在药厂内的合理布局,尽量采用地埋式设计,避免对周边环境产生恶臭影响。
4.4 加强运营期环境管理
为保证污水处理设施的正常运行,药厂需单独设立环境保护管理机构,对污水处理设施排口出水水质进行监测,保证达标排放。制定污水处理站日常管理、应急处理方案,确保事故状况下超标排水得到妥善处置,不得对市政污水处理设施或者地表水体造成影响。
5 结语
我国制药行业生产工艺复杂、工艺流程长,因此外排工艺废水具有排放量大、水质复杂、水质波动大、可生物降解性差等特点。因此针对制药行业水污染影响分析与评价,要求环评中必须认真对其工艺流程进行认真分析,掌握水污染物排污节点和污染物组成。根据制药厂实际工艺排污水,提出合理、有效、可行、经济的污水治理措施,保证污水达标排放。
[1]郝明家.制药行业环境影响评价中的水污染分析及其污染防治措施探讨[J].环境保护科学,2009,35(4):60~63.
[2]中华人民共和国环境保护部.《环境影响评价技术导则-制药建设项目》(HJ 611-2011)[S].北京:中华人民共和国环境保护部,2011.
[3]中华人民共和国环境保护部.《制药行业污染物排放标准-化学合成》编制说明[R].北京:中华人民共和国环境保护部,2007.
[4]水解酸化-SBR工艺处理固体制剂和化学合成制药废水[J].给水排水,2011,37(10):68~70.
[5]郭会灿.制药工业废水的特点及处理技术[J].医药化工,2011,34(6):29~31.
[6]李 志,李新峰.生物制药废水来源、特征及处理工艺[J].科技信息,2008(21):391.
[7]中华人民共和国环境保护部.《制药行业污染物排放标准-中药类》编制说明[R].北京:中华人民共和国环境保护部,2007.
[8]中华人民共和国环境保护部.《制药行业污染物排放标准-混装制剂类》编制说明[R].北京:中华人民共和国环境保护部,2007.
[9]王焕龙,戴友芝.微电解厌氧SBR组合工艺处理化学制药废水[J].湖南工程学院学报,2008,18(3):80~83.
[10]陈 曦.吹脱-厌氧-好氧串联工艺处理化学合成制药废水[J].水处理技术,2008,34(5):43~45.
[11]李亚峰,王 欣,谢新立.预处理-UASB-A/O工艺处理高浓度制药废水[J].给水排水,2012,38(5):56~57.
[12]王白杨,龚小明,陈 利.混凝预处理+UASB+ABR+A/O+气浮工艺处理原料药废水[J].水处理技术,2011,37(2):121~126.
[13]李 颖.电解~CASS工艺处理制药废水工艺研究与设计[J].环境工程,2003,21(1):33~36.
[14]任 健,马宏瑞,马炜宁,等.Fe/C微电解~Fenton氧化~混凝沉淀~生化法处理抗生素废水的试验研究[J].水处理技术,2011,37(3):84~87.
[15]祁佩时,王 娜,刘云芝,等.Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究[J].净水技术,2008,27(6):38~41.
[16]蒋展鹏,杨宏伟,谭亚军,等.催化湿式氧化技术处理VC制药废水的试验研究[J].给水排水,2004,30(3):41~44.
[17]许淑青.物理吸附法处理制药废水的研究[J].甘肃科技,2009,29(20):32~35.
[18]韩相奎,王树堂,刘 壮.接触氧化P水解酸化PSBR法处理中药废水[J].中国给水排水,2003,19(9):69~70.
[19]李红华,邓海涛,姚 兵.ABR-SBR工艺处理中成药制药废水[J].环境科技,2010,23(2):23~27.
[20]杨志勇,何争光,顾俊杰.气浮-SBR-滤池工艺处理制药废水[J].环境污染与防治,2008,30(7):104~105.