Snail的结构及功能与肿瘤生长侵袭的研究进展
2014-04-15吴丽霞刘丽江
吴丽霞,刘丽江
(1.江汉大学医学院病理学与病理生理教研室,湖北武汉430056;2.武汉大学基础医学院,湖北武汉430071)
Snail的结构及功能与肿瘤生长侵袭的研究进展
吴丽霞1,2,刘丽江1
(1.江汉大学医学院病理学与病理生理教研室,湖北武汉430056;2.武汉大学基础医学院,湖北武汉430071)
Snail为锌指蛋白超家族的第一个成员,在转录调控、形成抑制性染色质结构、细胞信号和发育过程中发挥积极作用。也可以由于放松管制而导致疾病。有研究表明,Snail可促使上皮-间质转化及E-cadherin和桥粒芯糖蛋白的降解,在胃癌、结肠癌、肝癌、卵巢癌、头颈部鳞状细胞癌等许多肿瘤组织中呈中高表达,被认为是促进肿瘤侵袭转移的因素。对Snail的深入研究不仅能更进一步阐明Snail的作用机制,并且为进一步研究以Snail为靶点的肿瘤治疗策略提供理论依据。本文对Snail的结构、功能以及Snail与肿瘤生长与侵袭进行了综述。
Snail;结构功能;肿瘤
Snail最初在果蝇中发现的,在中胚层的形成过程中发挥重要作用。Snail作为锌指蛋白转录因子,与多种肿瘤的形成、发展、转移相关。本文综述Snail的结构、功能以及Snail与肿瘤的生长与侵袭等方面的研究进展。
1 Snail的分子结构
Snail基因定位于人类染色体第20号染色体20q12.3,全长5 882 bp,含有3个外显子,编码多效性的锌指蛋白转录因子Snail。Snail为Snail家族的第一个成员,首先是在果蝇中发现的,随后在人体细胞、脊椎动物及软体动物等体内陆续被发现。Snail家族成员中包括Snail1(Snail)、Snail2(Slug)和Snail3(Smuc),在脊椎动物的中胚层形成过程中发挥着重要的作用[1]。Snail家族成员编码相似的锌指型转录因子由高度保守的含有4~6个不等的C2H2锌指结构的羧基末端DNA结合区和多变的氨基酸末端调节区组成,其中Cys-His(C2H2)锌指结构中的2个半胱氨酸和2个组氨酸残基能与Zn2+形成配键,并能与含有CAGGTG核心碱基的DNA结合位点结合,从而发挥转录因子的作用[2]。Snail含有4个锌指结构,锌指由2个β折叠片,1个α螺旋和含有1个DNA连接凹槽的氨基酸末端区域构成。在人Snail基因序列中存在2个糖原合酶激酶GSK-3β保守位点,GSK-3β与Snail结合后并发生磷酸化,来调节Snail的稳定性及细胞内定位[3]。Snail可与含有CAGGTG核心碱基序列的靶基因上的E-box作用元件结合,发挥转录抑制子的作用[4]。这种转录抑制的活性不仅仅依赖于锌指区,至少还发现了氨基酸末端的两个结合区,其中之一就是Snail/Gfi(又称SNAG)结合域,这个结合域对于哺乳动物来说是非常重要的[5]。
2 Snail的功能
2.1 胚胎着床发育
有研究表明,Snail在胚胎着床发育过程中发挥重要作用。Ma等[6]发现,在小鼠妊娠早期,Snail在胚胎着床部位的腔上皮下基质中呈高表达,但在非着床部位则没有检测到。并且当胚胎延迟着床即处于休眠状态时,也未检测到Snail的表达。但当用雌激素处理使胚胎着床后,在胚胎着床的基质周围同样检测到Snail的高表达。另外,在假孕的小鼠子宫中也无Snail的表达。当Snail被敲除后胚胎在原肠胚形成期死亡[7]。在胚胎发育过程中Snail可以抑制紧密连接相关蛋白的表达[8],因此高表达的Snail可阻止细胞在胚胎着床部位处形成紧密连接,使胚胎易于穿过内膜并与周围血管建立联系,促使胚胎发育。由于Snail家族成员还可以调节多种细胞外基质[9],并且MMPs家族成员在胚胎着床过程中也发挥着重要的作用[10]。因此,Snail可能通过抑制细胞-细胞之间紧密连接相关蛋白的表达及协调MMPs等胚胎着床相关分子的表达,从而在胚胎着床发育过程中发挥重要作用。
2.2 调节细胞周期和细胞存活
研究证明,Snail还具有调节细胞周期和细胞存活的功能。在胚胎发育阶段,Snail可抑制Cy⁃clin D2的转录和增加p21Cip1/WAF1的表达来调节G1早期到G1晚期的过渡和G1/S控制点。Snail不仅可以抑制细胞周期,且使细胞具有抵抗生存因子缺失或促凋亡因子诱导的细胞死亡的能力[11]。在大鼠实验中,经TGF-β处理的胎鼠肝细胞在培养过程中,其中大多数细胞发生凋亡,只有少数细胞经上皮间质转化(epithelial-mesenchy⁃mal transition,EMT)过程而存活了下来,经检测这些存活下来的细胞伴随有Snail的表达[12]。因此,Snail也可能作为一种抗凋亡因子在胚胎发育过程中发挥作用。最近的研究发现,Snail可通过调节细胞的新陈代谢关键酶的表达和活性及通过减少细胞对周围环境氧和营养成分的需要来达到抗缺氧和营养不良诱导的细胞死亡[13]。
2.3 促进细胞迁移
研究表明,Snail具有促进细胞迁移的作用。在发育过程中,Snail抑制上皮细胞黏附分子,最终导致上皮间质转化(EMT)。在EMT过程中,上皮细胞基因表达发生转变,细胞黏附分子E-钙黏蛋白(E-cadherin)的下调[14]。细胞失去上皮细胞极性,细胞外基质成分发生降解,细胞间连接丧失,从而使细胞变得具有迁移性,可从上皮游离下来并迁移到其他部位。利用干细胞性质几乎可以将静态的上皮细胞转换为具有运动性和侵袭性的间充质细胞[15-17]。在胚胎的发育过程中,EMT可由Snail从不同途径得到启动或诱导,Snail在这个过程中协调不同的信号通路而发挥核心作用。另有研究发现,当用射线照射大鼠肺泡II型上皮细胞时其可产生一系列的ROS,从而激活MEK/ERK信号通路,活化的ERK1/2通过丝氨酸上9活性位点磷酸化使GSK-3β失活,从而导致GSK-3β和Snail解离,解离后的Snail进入细胞核发挥阻遏E-cadherin表达的功能,并启动EMT[18-20]。
3 Snail与肿瘤生长和侵袭的研究进展
3.1 Snail与肿瘤生长
Snail不仅在胚胎发育过程中可以防止细胞的死亡,在许多肿瘤细胞中也检测到Snail的表达与肿瘤的生长有关。Snail可通过调节细胞周期蛋白Cyclin D2阻止细胞进入G1后期[11],肿瘤细胞中异常表达的Snail可能具有促进肿瘤生长的作用。有研究发现,在肿瘤细胞中异常表达的Snail可能通过调节抑癌基因P53及其他促凋亡因子来对抗细胞程序性死亡而促进肿瘤的发生[21]。Sun等[22]在研究DDX3调节Snail的作用中发现,敲除DDX3后HeLa细胞和MCF-7细胞中的Snail基础表达水平降低,并伴有细胞增殖和迁移的减少。同时在临床多形性胶质母细胞瘤(GBM)的样本中也检测到Snail和DDX3的显著相关性。这些结果表明,肿瘤中高表达的Snail可能具有促进肿瘤细胞增殖的作用。相反地,通过干扰Snail使其表达下调发现,小鼠结肠癌的肿瘤细胞死亡增加,增殖减少,且癌旁肠黏膜分化程度趋于正常化[23]。临床上也有研究表明,多种肿瘤中Snail的高表达预测着肿瘤复发风险的增大[24-25]。以上研究均表明高表达Snail的肿瘤细胞不仅具有更强的存活能力,还能抑制细胞凋亡,进而促进肿瘤生长及复发。
3.2 Snail与肿瘤侵袭
肿瘤转移是恶性肿瘤治疗失败和患者死亡的最主要原因,肿瘤发生转移的初期重要事件之一是肿瘤细胞之间的特异连接遭到破坏,导致肿瘤细胞具有迁移性并侵入到周围的组织及血管内。在多数肿瘤组织中分离出的细胞系中,均检测到Snail和细胞黏附分子E-钙黏蛋白的负相关表达关系[26]。Snail在人原位癌中表达的首次发现,是由Cheng等[27]在分析乳腺导管癌中E-钙黏蛋白失活的不同机制中提出的。Fujita等[28]发现,在乳腺上皮细胞中存在一种依赖于雌激素途径的Mi-2/NuRD转录抑制复合物成分MTA3,Snail基因可通过依赖组蛋白向去乙酰化酶(HDAC)途径被MTA3抑制。在雌激素受体(ER)阴性的乳腺癌中,MTA3的缺失导致对转录抑制因子Snail的抑制作用丧失,E-钙黏蛋白的表达缺失,使上皮组织发生重建并表现为侵入性生长。并且在临床样本中也观察到ER的缺失导致MTA3缺失、Snail表达及E-cadherin的缺失。这一结果认为ER的丢失导致的Snail异常表达可能促进肿瘤的生长。在利用RNA干扰方式使Snail表达沉默的研究中发现,沉默的Snail细胞诱导一个完整的MET,相关联地上调E-cadherin和下调间质标记并抑制浸润。更重要的是,内源性Snail在两个独立癌细胞系内的稳定干扰导致体内肿瘤的生长的显著减少,并伴随着肿瘤分化的增加及MMP-9、血管生成的标记和侵袭性的显著减少。这些结果表明,用RNA干扰阻断Snail功能可有效地抑制肿瘤的侵袭[29]。而Sivertsen等[30]在恶性间皮瘤中的研究中发现Snail的表达与MMP有关而与钙黏蛋白无关,但与MMP之间的相关性仍不明确。另外Kume等[31]在口腔鳞癌的研究中发现转录因子Snail增强了细胞黏附分子E-钙黏蛋白和桥粒芯糖蛋白-2的降解,导致细胞间的粘连下降,促进肿瘤细胞的侵袭。在肿瘤转移的早期阶段可发生EMT,而Snail的激活可诱导EMT,在肿瘤的黏附、侵袭、转移中起重要作用。EMT以严格的时空调节方式发生于正常胚胎发育的特殊时期,如原肠胚形成、神经嵴形成和其他组织形态发生过程,在癌症扩散过程中发挥作用的机制并不清楚。Zheng等[18]在研究人胃肠道癌细胞中发现,FAS信号可激活ERK/MAPK使其磷酸化,通过磷酸化抑制GSK-3β的活性,失活的GSK-3β可阻止β-catenin和Snail泛素化后降解。β-catenin和Snail在细胞核内积累,通过抑制E-cadherin表达、诱导MMP9和Vimentin的表达,实现EMT的诱导。Snail在核内还可通过与β-catenin的结合来提高其转录活性,从而进一步放大其效应。肿瘤坏死因子TNF-α可激活NF-κB、AKT、ERK、p38MAPK信号通路,以激活AKT通路并抑制GSK-3β的活性来提升Snail的稳定性,最终实现对EMT的诱导[18]。Naber等[32]应用体外侵袭法和斑马鱼胚胎移植瘤模型的方法证实,Snail介导TGF-β诱导EMT,从而使单个细胞具有侵袭性和转移性。最近还有研究发现,Snail通过促进肿瘤细胞分泌Cyr61,诱导细胞迁移并形成侵袭转移的肿瘤细胞巢[33]。
来自临床的研究发现Snail的高表达与肿瘤的侵袭转移有关。Blechschmidt等[34]对48例伴有转移的原发性卵巢癌进行免疫组织化学分析发现,Snail与E-cadherin在卵巢癌的原发灶和转移灶中的表达具有明显的负相关性,在原发灶癌组织中E-cadherin的表达明显降低,而Snail则表达为明显的增高,且这一表达趋势在转移灶癌组织中更为明显,提示Snail可能是一个转移的高相关因子。Fan等[35]检测了一组193例大肠癌组织中Snail的表达,结果显示Snail在淋巴结阳性的组织中高表达(68.4%,P<0.000 1),Snail的异常表达与E-cadherin表达的降低有关,提示了Snail-EMT-淋巴结转移之间的潜在联系。
4 小结
Snail通过其特定的结构在胚胎发育过程中发挥着重要的作用,并且在肿瘤的生长侵袭转移中展现出的生物学功能与正常发育时发挥的生物学功能具有相似性。在肿瘤转移的早期阶段可发生EMT,EMT可由Snail从不同途径启动或诱导,Snail在这个过程中可能协调不同的信号通路而发挥着核心作用,而上皮间质转化的过程受到微环境及各种刺激的调节是动态的和可逆的。进一步研究Snail促进肿瘤生长侵袭的机制,阻止EMT或逆转EMT成MET,有望为治疗恶性肿瘤提供新的策略。
[1]NIETO M A.The snail superfamily of zinc-finger tran⁃scription factors[J].Nat Rev Mol Cell Biol,2002,3(3):155-166.
[2]FUSE N,HIROSE S,HAYASHI S.Diploidy of Dro⁃sophila imaginal cells ismaintained by a transcriptional repressor encoded by escargot[J].Genes Dev,1994,8(19):2270-2281.
[3]ZHOU B P,DENG J,XIAW Y,et al.Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition[J].Nat Cell Biol,2004,6(10):931-940.
[4]LABONNE C,BRONNER-FRASER M.Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crestand its subsequent migration[J].Dev Biol,2000,221(1):195-205.
[5]NAKAYAMA H,SCOTT IC,CROSS JC.The transi⁃tion to endoreduplication in trophoblast giant cells is regulated by the mSNA zinc finger transcription factor[J].Dev Biol,1998,199(1):150-163.
[6]MA X H,HU S J,YU H,et al.Differential expression of transcriptional repressor snail gene at implantation site in mouse uterus[J].Mol Reprod Dev,2006,73(2):133-141.
[7]CARVER E A,JIANG R,LAN Y,et al.The mouse Snail gene encodes a key regulator of the epitheli⁃al-mesenchymal transition[J].Mol Cell Biol,2001,21(23):8184-8188.
[8]IKENOUCHIJ,MATSUDA M,FURUSEM,et al.Reg⁃ulation of tight junctions during the epithelium-mesen⁃chyme transition direct repression of the gene expres⁃sion of claudinsoccludin by Snaill[J].Cell Sci,2003,116:1959.
[9]SEKI K,FUJIMORI T.Mouse Snail family transcrip⁃tion repressors regúlate chondrocyte,extracellular ma⁃trix,typeⅡcollagen,and aggrecan[J].Biol Chem,2003,278(43):41862-41870.
[10]DEY SK,LIM H,DASSK,et al.Molecular cues to implantation[J].Endocr Rev,2004,25(3):341-373.
[11]VEGA S,MORALESA V,OCANA O H,et al.Snail blocks the cell cycle and confers resistance to cell death[J].Genes Dev,2004,18(10):1131-1143.
[12]VALDES F,ALVAREZ A M,LOCASCIO A,et al. The epithelial mesenchymal transition confers resis⁃tance to the apoptotic effects of transforming growth fac⁃tor Beta in fetal rat hepatocytes[J].Mol Cancer Res,2002,1(1):68-78.
[13]HARAGUCHI M,INDO H P,IWASAKI Y,et al. Snailmodulates cellmetabolism in MDCK cells[J].Bio⁃chem Biophys Res Commun,2013,432(4):618-625.
[14]JECHLINGER M,GRUNERT S,TAMIR I H,et al. Expression profiling of epithelial plasticity in tumor pro⁃gression[J].Oncogene,2003,22(46):7155-7169.
[15]PEINADO H,OLMEDA D,CANO A.Snail,Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype[J].Nat Rev Cancer,2007,7(6):415-428.
[16]BARRALLO-GIMENO A,NIETO M A.The Snail genes as inducers of cellmovementand survival:impli⁃cations in development and cancer[J].Development,2005,132(14):3151-3161.
[17]MANIS A,GUO W,LIAO M J,et al.The epitheli⁃al-mesenchymal transition generates cells with proper⁃tiesof stem cells[J].Cell,2008,133(4):704-715.
[18]ZHENG H,LIW,WANG Y,et al.Glycogen synthase kinase-3 beta regulates Snail and beta-catenin expres⁃sion during Fas-induced epithelial-mesenchymal tran⁃sition in gastrointestinal cancer[J].Eur J Cancer,2013,49(12):2734-2746.
[19]WANG H,FANG R,WANG X F,et al.Stabilization of Snail through AKT/GSK-3beta signaling pathway is required for TNF-alpha-induced epithelial-mesenchy⁃mal transition in prostate cancer PC3 cells[J].Eur J Pharmacol,2013,714(1/2/3):48-55.
[20]NAGARAJAN D,MELO T,DENG Z,et al.ERK/ GSK3beta/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition[J].Free Radic BiolMed,2012,52(6):983-992.
[21]KAJITA M,MCCLINIC K N,WADE PA.Aberrant ex⁃pression of the transcription factors snail and slug alters the response to genotoxic stress[J].Mol Cell Biol,2004,24(17):7559-7566.
[22]SUNM,SONG L,ZHOU T,etal.The role of DDX3 in regulating Snail[J].Biochim Biophys Acta,2011,1813(3):438-447.
[23]ROY H K,IVERSEN P,HART J,etal.Down-regula⁃tion of SNAIL suppresses MIN mouse tumorigenesis:modulation of apoptosis,proliferation,and fractal di⁃mension[J].Mol Cancer Ther,2004,3(9):1159-1165.
[24]BRUYERE F,NAMDARIAN B,CORCORAN N M,et al.Snail expression is an independent predictor of tu⁃mor recurrence in superficial bladder cancers[J].Urol Oncol,2010,28(6):591-596.
[25]PEINADO H,MORENO-BUENO G,HARDISSON D,et al.Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas[J].Cancer Res,2008,68(12):4541-4550.
[26]JIAOW,MIYAZAKIK,KITAJIMA Y.Inverse correla⁃tion between E-cadherin and Snail expression in hepa⁃tocellular carcinoma cell lines in vitro and in vivo[J]. Br JCancer,2002,86(1):98-101.
[27]CHENG CW,WU P E,YU JC,et al.Mechanisms of inactivation of E-cadherin in breast carcinoma:modifi⁃cation of the two-hit hypothesis of tumor suppressor gene[J].Oncogene,2001,20(29):3814-3823.
[28]FUJITA N,JAYE D L,KAJITA M,et al.MTA3,a Mi-2/NuRD complex subunit,regulates an invasive growth pathway in breast cancer[J].Cell,2003,113(2):207-219.
[29]OLMEDA D,JORDA M,PEINADO H,et al.Snail si⁃lencing effectively suppresses tumour growth and inva⁃siveness[J].Oncogene,2007,26(13):1862-1874.
[30]SIVERTSEN S,HADAR R,ELLOUL S,et al.Expres⁃sion of Snail,Slug and Sip1 inmalignantmesothelioma effusions is associated with matrix metalloproteinase,but not with cadherin expression[J].Lung Cancer,2006,54(3):309-317.
[31]KUME K,HARAGUCHIM,HIJIOKA H,et al.The transcription factor Snail enhanced the degradation of E-cadherin and desmoglein 2 in oral squamous cell car⁃cinoma cells[J].Biochem Biophys Res Commun,2013,430(3):889-894.
[32]NABER H P,DRABSCH Y,SNAAR-JAGALSKA B E,et al.Snail and Slug,key regulators of TGF-be⁃ta-induced EMT,are sufficient for the induction of sin⁃gle-cell invasion[J].Biochem Biophys Res Commun,2013,435(1):58-63.
[33]TANAKA F,RIZQIAWAN A,HIGASHIKAWA K,et al.Snail promotes Cyr61 secretion to prime collective cell migration and form invasive tumor nests in squa⁃mous cell carcinoma[J].Cancer Lett,2013,329(2):243-252.
[34]BLECHSCHMIDT K,SASSEN S,SCHMALFELDT B, et al.The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients[J].Br JCancer,2008,98(2):489-495.
[35]FAN X J,WAN X B,YANG Z L,etal.Snail promotes lymph nodemetastasis and twist enhances tumor depos⁃it formation through epithelial-mesenchymal transition in colorectal cancer[J].Hum Pathol,2013,44(2):173-180.
Research Progresson Structu re-function of Snailand Relationship w ith Tum or′sG row th and Invasion
WU Li-xia1,2,LIU Li-jiang1
(1.SchoolofMedicine,Jianghan University,Wuhan 430056,Hubei,China;2.Schoolof Basic Medical Sciences,Wuhan University,Wuhan 430071,Hubei,China)
Snailwas the firstmember of zinc finger protein superfam ily,it plays a positive role in transcriptional control,formation of structure of suppressant chromation,cell signaling and growth.It can cause diseases because of control relaxation.Many researches have been discovered that Snail can induce epithelial-mesenchymal transition and E-cadherin and desmoglein degrada⁃tion,Snail showed high expression inmany tumor tissues,such as in stomach,colon,liver cancer,ovarian cancer,head and neck squamous cell carcinoma,which was considered a contributing factor to tumor invasion and metastasis.Deep study of Snail can notonly elucidate themechanism of Snail,but also provide theoretical foundation for tumor treatmentwhich take Snail as target spot.Reviews the structure,function of Snailand the relationship with tumor′s growth and invasion.
Snail;structure and function;tumor
R730.23
A
1673-0143(2014)01-0075-05
(责任编辑:范建凤)
2013-09-05
吴丽霞(1987—),女,硕士生,研究方向:肿瘤病理。