兔定位性动脉粥样硬化发病机制的实验研究
2014-04-10吴志勇颜光烈陈诗泉等
吴志勇+颜光烈+陈诗泉+等
福建医科大学省立临床医学院 福建省立医院心内科,福建福州 350001
[摘要] 目的 探讨定位性动脉粥样硬化模型中动脉粥样硬化的发病机制及各因素间内在联系。 方法 将48只新西兰白兔随机分成两组:对照组6只给予基础饲料+假手术,模型组42只饲以1%胆固醇、6%猪油的高脂饲料8周,进食高脂饲料后1周行髂动脉球囊内膜剥脱术。酶学法测定三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)水平;放免法测定血浆内皮素(ET)、血栓素B2(TXB2)、6-酮-前列腺素F1α(6-Keto-PGF1α)水平;硝酸还原法测定血清一氧化氮(NO)水平;免疫比浊法测定二磷酸腺苷(ADP)诱导的最大血小板聚集率(MPA)。8周时进行髂动脉造影,处死对照组及部分模型组动物行光镜检查。使用SPSS 19.0统计软件进行配对或非配对t检验,并进行多元线性回归分析,相关分析采用Pearson检验。 结果 模型组中所有髂动脉都有不同程度(15%~100%)的狭窄,平均(61.47±28.10)%,对照组未见明显狭窄。与对照组[TG:(0.96±0.78) mmol/L,TC:(1.89±0.60)mmol/L,LDL-C:(0.85±0.42)mmol/L,ET:(297.55±44.67)ng/L,MPA:(33.72±6.35)%,TXB2:(68.55±8.90)ng/L,TXB2/6-Keto-PGF1α:19.67±3.38]相比,血清或血浆TG、TC、LDL-C、ET、MPA、TXB2和TXB2/6-Keto-PGF1α比值在模型组中均显著增高[TG:(4.61±2.15)mmol/L,TC:(40.49±9.53)mmol/L,LDL-C:(36.96±8.17)mmol/L,ET:(386.78±52.92)ng/L,MPA:(48.10±7.25)%,TXB2:(184.14±27.51)ng/L,TXB2/6-Keto-PGF1α:85.75±37.50],差异有高度统计学意义(P < 0.01),除TG外上述指标血清或血浆浓度均分别与髂动脉最大狭窄程度(MSD)呈正相关(P < 0.05);而与对照组[HDL-C:(0.64±0.18)mmol/L,NO:(71.83±3.81)μmol/L,6-Keto-PGF1α:(361.11±71.69)ng/L,NO/ET比值:23.30±0.76]比较,血清或血浆HDL-C、NO、6-Keto-PGF1α以及NO/ET比值在模型组均显著减少[HDL-C:(0.33±0.19)mmol/L,NO:(51.43±11.10)μmol/L,6-Keto-PGF1α:(240.20±67.53)ng/L,NO/ET比值:13.45±3.15],差异有高度统计学意义(P < 0.01),均与髂动脉MSD呈负相关(P < 0.05)。多元线性回归分析显示,MSD与血浆TXB2和ADP诱导的MPA相关(R2=0.804,P = 0.015)。组织病理学检查显示,内膜明显增厚,粥样斑块形成。 结论 高脂饮食及内皮损伤成功复制定位性动脉粥样硬化模型,通过血小板分泌及聚集功能变化而发挥作用,体现了脂质浸润学说、内皮损伤学说、血栓学说在动脉粥样硬化形成中存在一定的内在联系。
[关键词] 动脉粥样硬化;疾病模型;发病机制;兔
[中图分类号] R543.5 [文献标识码] A [文章编号] 1673-7210(2014)03(c)-0012-05
Experimental study on the pathogenesis of focal atherosclerosis in rabbits
WU Zhiyong YAN Guanglie CHEN Shiquan PU Xiaodong
Department of Cardiology, Provincial Clinical College of Fujian Medical University Fujian Provincial Hospital, Fujian Province, Fuzhou 350001, China
[Abstract] Objective To investigate the pathological mechanism of atherosclerosis and internal relations among various factors in focal atherosclerotic model. Methods 48 New Zealand white rabbits were randomly divided into two groups: control group was given standard diet and sham operation (n=6), model group was given an atherogenic diet with 1% cholesterol and 6% pig oil for 8 weeks and balloon endometrial stripped in iliac artery was done 1 week after atherogenic diet (n=42). Before and after 8 weeks of dietary intervention, bood samples were collected for enzymatic measurement of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholestrol (LDL-C) and high-density lipoprotein cholestrol (HDL-C). Plasma endothelin (ET), thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α) were detected by radioimmunoassy. Serum nitric oxide (NO) was measured by nitrate reductase, and maximal platelet aggregation (MPA) rate following adenosine diphosphate (ADP) activation in vitro was assessed by immunoprecipitation. At the end of the dietary intervention, iliac artery quantitative angiography was made and iliac arteries in control and partial model group (n=6) were examined by light microscopy. Paired or unpaired t test, multiple linear regression analysis and Pearson correlation analysis were carried out by SPSS 19.0. Results All iliac arteries had various degrees of stenosis ranging from 15% to 100%, with the average of (61.47 ± 28.10) % in model group, but no obvious stenosis in control group. Compared with control group [TG: (0.96±0.78) mmol/L, TC: (1.89±0.60) mmol/L, LDL-C: (0.85±0.42) mmol/L, ET: (297.55±44.67) ng/L, MPA: (33.72±6.35) %,TXB2: (68.55±8.90) ng/L,TXB2/6-Keto-PGF1α:19.67±3.38], serum or plasma TG, TC, LDL-C, ET, TXB2 concentration and the ratio of TXB2 to 6-keto-PGF1α significantly increased in model group [TG: (4.61±2.15) mmol/L, TC: (40.49±9.53) mmol/L, LDL-C: (36.96±8.17) mmol/L, ET: (386.78±52.92) ng/L, MPA: (48.10±7.25) %, TXB2: (184.14±27.51) ng/L ,TXB2/6-Keto-PGF1α: 85.75±37.50], with statistically significant differences (P < 0.01), and had positive relation to the maximal stenotic degree (MSD) except TG for all rabbit iliac arteries, respectively (P < 0.05). In contrast, compared with control group [HDL-C: (0.64±0.18) mmol/L, NO: (71.83±3.81) μmol/L, 6-Keto-PGF1α: (361.11±71.69) ng/L, the ratio of NO to ET: 23.30±0.76], serum or plasma HDL-C, NO, 6-keto-PGF1α levels and the ratio of NO to ET significantly decreased in model group [HDL-C: (0.33±0.19) mmol/L, NO: (51.43±11.10) μmol/L, 6-Keto-PGF1α: (240.20±67.53) ng/L,the ratio of NO to ET: 13.45±3.15], with statistically significant differences (P < 0.01), and negatively related to the MSD for all rabbit iliac arteries, respectively (P < 0.05). Multiple linear regression revealed that plasma TXB2 level and ADP-induced MPA rate contributed to the MSD (R2=0.804, P= 0.015). Histopathologic examination showed endometrium obvious thickening, atheromatous plaque had formed. Conclusion Focal atherosclerotic model in rabbit iliac artery is successfully replicated by combination an atherogenic diet with endothelial dedutation through platelet function changes of secretion and aggregation within a short period of time, which also reveals the intrinsic relations among lipid infiltration, endothelial injury and thrombogenicity during atherosclerotic progression.
[Key words] Atherosclerosis; Disease model; Pathogenesis; Rabbits
动脉粥样硬化的形成机制极其复杂,涉及血管内皮细胞、平滑肌细胞、巨噬细胞/单核细胞表型改变、血小板功能变化,进而相互影响,最终导致动脉粥样硬化的形成。本文采用血管内皮损伤及高脂饮食建立动脉粥样硬化模型,观察血管活性物质及血小板功能变化,探讨动脉粥样硬化的形成机制及其内在联系。
1 材料与方法
1.1 动物与分组
纯种新西兰大白兔48只购自福建省药检所,雌雄不限,体重2.5~3.5 kg,5~6月龄,每只单笼饲养于福建省立医院动物实验室内。随机分为两组:对照组6只,喂养普通颗粒饲料(购自福建省科洪技术有限公司),每日100 g;模型组42只,喂养高脂饲料(含1%胆固醇,6%猪油,93%普通饲料),每日100 g,自由饮水。
1.2 双侧髂动脉内膜剥脱术
模型组动物在相应饲料饲养7~10 d后,行双侧髂动脉内膜剥脱术,3%戊巴比妥钠1 mL/kg经耳缘静脉注射麻醉,经股动脉逆行插入球囊导管(导管直径1.2 mm,球囊直径2.5 mm,球囊长度20 mm,Cordis公司产品),插入深度为6 cm,采用压力注射器向球囊内注入肝素生理盐水,维持压力4 atm,缓慢回拉导管至切口处,抽空球囊内液体,重复上述过程3次,退出导管,结扎动脉,缝合皮肤。以同样方法剥脱对侧髂动脉内皮。术后给予肌注青霉素80万U/只,连续3 d。对照组仅分离出相应动脉未予结扎及剥脱。继续上述各自饲料喂养。
1.3 双侧髂动脉造影术
在高脂饲料喂养8周后行髂动脉造影术。动物麻醉后,在1000 mA血管数字减影机X线透视下,经右颈总动脉上段引入4F造影导管(Cordis公司产品)至腹降主动脉分叉上方,经导管注入肝素300单位后,快速注入38%泛影葡胺2~3 mL,并电影摄片。
1.4 观察指标
在动物实验室所有动物先进食普通饲料后1周,称体重,空腹自耳中央动脉抽血后,给予相应饲料喂养,并在内膜剥脱术后7周,复查血清或血浆指标。
1.4.1 血脂测定 空腹取血约2 mL于10 mL离心管中,1500 r/min离心20 min(离心半径8 cm),取上清液,采用美国贝克曼公司生产的SRX型全自动生化分析仪测定血清总胆固醇(TC)、三酰甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)水平。
1.4.2 血清及血浆各指标测定 一氧化氮(NO)按试剂盒要求进行测定,购自南京建成生物工程有限公司(其浓度用μmol/L为单位);血浆内皮素(ET)、血浆血栓素B2(TXB2)、6-酮-前列腺素F1α(6-Keto-PGF1α)分别采用125I-ET、125I-TXB2及125I-6-Keto-PGF1α标记的放射免疫分析法测定,按试剂盒要求进行,以GC-1200γ放射免疫计数器(中佳光电仪器分公司)记录结果(其浓度以ng/L为单位),试剂盒均购自解放军总医院科技开发中心放免研究所。
1.4.3 血小板最大聚集率(MPA)测定 按试剂盒要求进行,以ADP(4 μmol/L)为诱导剂,运用北京普利生血液凝集仪LBY-NJ2进行测定,以百分率为单位;采用Medonic CA620血常规分析仪自动测量血小板计数。
1.4.4 髂动脉狭窄情况测定 运用血管数字减影机放映摄片电影,测量双侧髂动脉的狭窄部位及其程度。
1.4.5 组织病理学检查 在髂动脉造影术后,随机取模型组动物6只以及对照组动物,以生理盐水、4%多聚甲醛溶液灌注髂动脉,分离双侧髂动脉,以造影片为参照,切取相应狭窄部位血管,置10%中性福尔马林中继续固定24 h。根据造影片选取髂动脉血管0.5~1.0 cm,石蜡包埋,间断均匀切片5~10张,切片厚度5 μm,分别制作苏木精伊红染色,弹力纤维染色(醛品红法)观察形态学变化。
1.5 统计学方法
使用SPSS 19.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,两组间比较采用配对或非配对t检验,并进行多元线性回归分析。相关分析采用Pearson分析。以P < 0.05为差异有统计学意义。
2 结果
2.1 血脂测定结果
实验前(0周)两组间血脂水平差异无统计学意义(P > 0.05),8周后模型组TG、TC及LDL-C明显高于对照组(P < 0.01),HDL-C则明显低于对照组(P < 0.01)。见表1。
表1 高脂饲料对兔血脂的影响(mmol/L,x±s)
注:与对照组同时间比较,*P < 0.01;与同组0周比较,△P < 0.01;TG:三酰甘油;TC:总胆固醇;LDL-C:低密度脂蛋白胆固醇;HDL-C:高密度脂蛋白胆固醇
2.2 血TXB2、6-Keto-PGF1α及其比值的变化
实验前(0周)两组间血TXB2、6-Keto-PGF1α及其比值差异无统计学意义(P > 0.05),8周后与对照组比较,模型组TXB2及TXB2/6-Keto-PGF1α明显升高(P < 0.01),而6-Keto-PGF1α明显降低(P < 0.01)。见表2。
表2 血浆血栓素B2、6-酮-前列腺素F1α及其比值的变化(x±s)
注:与对照组同时间比较,*P < 0.01;与同组0周比较,△P < 0.01;TXB2:血栓素B2;6-Keto-PGF1α:6-酮-前列腺素F1α
2.3 血NO、ET及其比值的变化
实验前(0周)两组间血NO、ET及其比值差异无统计学意义(P > 0.05),8周后与对照组比较,模型组NO及NO/ET比值明显降低(P < 0.01),而ET则明显升高(P < 0.01)。见表3。
表3 血一氧化氮、内皮素及其比值的变化(x±s)
注: 与对照组同时间比较,*P < 0.01;与同组0周比较,△P < 0.01;NO:一氧化氮;ET:内皮素
2.4 MPA、血小板计数(PLT)及体重(WT)变化
实验前(0周)两组MPA、PLT及WT差异无统计学意义(P > 0.05),8周后与对照组比较,模型组MPA明显升高(P < 0.01),WT及PLT差异无统计学意义(P > 0.05);8周后对照组WT较实验前(0周)有所增加(P < 0.05)。见表4。
表4 最大血小板聚集率、血小板计数及体重变化(x±s)
注:与对照组同时间比较,*P < 0.01;与同组0周比较,#P < 0.05,△P < 0.01;MPA:最大血小板聚集率;PLT:血小板计数;WT:体重
2.5 动脉造影结果
对照组兔双侧髂动脉管壁光滑,管腔未见明显狭窄或闭塞。模型组可见双侧髂动脉管腔不同程度的狭窄,甚至完全闭塞,自15%~100%不等,平均狭窄程度为(61.47±28.10)%,多为向心性狭窄,病变可呈局限性或弥漫性狭窄改变,多分布于30%~50%以及75%~100%之间。
2.6 血管狭窄程度与血浆或血清各指标的相关性分析
以每只兔的双侧髂动脉最大狭窄程度作为其狭窄程度,发现其狭窄程度与高脂饮食后血浆或血清NO浓度(r = -0.598,P < 0.01)、6-keto-PGF1α(r = -0.546,P < 0.01)、NO/ET比值(r = -0.745,P < 0.01)、HDL-C浓度(r = -0.286,P < 0.05)呈负相关,而与血清或血浆ET(r = 0.477,P < 0.01)、TXB2(r = 0.881,P < 0.01)、MPA(r = 0.606,P < 0.01)、 TXB2/6-Keto-PGF1α比值(r = 0.672,P < 0.01)、TC(r = 0.466,P < 0.01)、LDL-C(r = 0.732,P < 0.01)呈正相关。经多元线性回归分析显示,其狭窄程度与TXB2及MPA相关,Y=-75.478+0.583TXB2+0.874MPA,(R2 = 0.804,P = 0.015)。
2.7 病理学改变
光镜观察:对照组兔髂动脉内膜完整,内皮细胞连接紧密,其下可见完整的波浪状内弹力膜,中膜由多层整齐排列的平滑肌细胞组成,细胞核多呈梭形,外弹力膜完整。模型组髂动脉管壁明显增厚,管腔向心或偏心性缩小;可见较稀疏的再生内皮细胞形状大小不一,核偏大;内膜增厚,可见大量的脂质和泡沫细胞、胶原纤维以及核形状不一排列紊乱的平滑肌细胞,部分严重者可见典型的粥样斑块,其表层为纤维结缔组织,深部为无细胞的不定形物质,其中含有胆固醇结晶、坏死组织和少量纤维素。内弹力膜呈不同程度断裂,外弹力膜尚完整。
3 讨论
本实验显示经高脂饮食后,可见血中TG、TC及LDL-C均明显增高,而HDL-C明显降低,与文献报道[1]相似,有利于大量脂质(胆固醇酯等)在血管壁内沉积,诱发单核-巨噬细胞、平滑肌细胞等向内膜迁移、浸润,吞噬氧化LDL(OXLDL),最终形成泡沫细胞,并释放各种细胞因子和生长因子,致使细胞外基质合成增加,导致血管壁纤维化等病变。同时,也发现其变化程度与髂动脉的最大狭窄程度存在明显相关性,与文献报道相似[2]。
本实验模型在高胆固醇饮食的同时,进行内膜剥脱,严重地导致局部内皮细胞的损伤、脱落、丢失,从而暴露内皮下血管壁组织,可有利于脂质侵入血管壁,同时也协同促进细胞外基质的合成,有利于局部粥样硬化的形成[3]。大量动物实验及临床研究均已表明,高脂血症可导致不同程度的内皮功能异常,表现为内皮依赖性舒张功能不全,血NO浓度降低,ET水平升高,以致血NO/ET比值下降等[4-6]。这与本模型所致的外周血改变相似。高脂血症时,可导致血管壁内皮细胞产生的超氧阴离子(O2-)增高而导致NO的灭活增加[7];OXLDL的升高,可明显地抑制内皮细胞中一氧化氮合酶(NOS)活性及其基因的表达,从而减少内皮源性NO的产生[4];而OXLDL还可刺激巨噬细胞及内皮细胞产生和释放ET-1[8],导致血浆中ET升高[5],高胆固醇血症除可导致ET-1本身mRNA表达增加[8]外,还可增加血管壁组织中内皮素转换酶活性,进而引起组织内ET浓度的升高[5],而且本模型显示血浆中ET水平与髂动脉的最大狭窄程度呈正相关,与文献报道相似[6]。在此模型中还发现血浆NO/ET比值与病变程度呈负相关,NO、ET的失衡,则可导致单核细胞的黏附、浸润,促进了平滑肌细胞有丝分裂和增殖等,最终导致动脉粥样硬化的发生。
高胆固醇血症对内皮功能的影响,不仅表现在NO、ET之间的失衡,还导致血浆中前列环素(PGI2)的减少[9]。PGI2和血栓素(TXA2)都是花生四烯酸在磷脂酶、环氧化酶催化下辗转生成的产物,前者主要产生于血管内皮细胞,而后者主要产生于血小板,它们在血液中不稳定,不易直接测定,检测其代谢产物6-Keto-PGF1α和TXB2水平能较好地反映机体内PGI2和TXA2水平。本模型显示在高胆固醇血症兔血浆中PGI2下降,TXA2明显升高,与文献报道相似[9],且其浓度变化与动脉粥样硬化的主动脉壁内改变相一致[9],可见动脉粥样硬化的形成与血浆中PGI2/TXA2平衡紊乱密切相关。本模型中发现血浆TXB2及TXB2/6-Keto-PGF1α比值与髂动脉的最大狭窄程度呈正相关,而6-Keto-PGF1α与后者呈负相关,与Kobayashi等[10]报道不相符,可能与动脉种类、选择的模型动脉以及模型中内皮是否剥脱不同有关。OXLDL可抑制内皮细胞和血小板合成PGI2,促进TXA2的生成[11]。PGI2和TXA2浓度改变及比例的失衡,有利于血管收缩、血小板聚集,参与动脉粥样硬化的形成。
本模型显示经高胆固醇饮食后,兔ADP诱导的MPA明显升高,与文献报道相似,但对其动脉粥样病变形成起作用较小[12],与本模型不相符,可能与内皮剥脱差异有关。高胆固醇血症时可能血小板和血浆中花生四烯酸含量明显增高[13-14],而表现出血小板高反应性(血小板聚集率明显升高、TXA2合成增加等)。此外,本模型并未发现其血小板计数的变化,与文献报道相似[15]。
经多元回归分析后显示,动脉狭窄程度主要与血浆TXB2浓度及ADP诱导的MPA相关,在一定程度上体现了血小板分泌、聚集功能的变化在此模型中起着不可忽视作用,也反映了动脉粥样硬化模型形成中,脂质浸润学说、内皮细胞损伤学说及血栓学说间存在一定的内在联系。
[参考文献]
[1] 孙宝贵,傅世英,黄永麟,等.实验性家兔动脉粥样硬化狭窄模型[J].中国介入心脏病学杂志,1995,3(2):67-68.
[2] Tribouilloy CM,Peltier M,Iannetta-Peltier MC,et al. Relation between low-density lipoprotein cholesterol and thoracic aortic atherosclerosis [J]. Am J Cardiol,1999,84(5):603-605,A9.
[3] Alavi MZ,Wasty F,Li Z,et al. Enhanced incorporation of [14C] glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro [J]. Atherosclerosis,1992,95(1):59-67.
[4] 徐少平,李鲁光,唐朝枢,等.一氧化氮及其合酶在家兔粥样硬化动脉的改变及L-精氨酸的作用[J].中国动脉硬化杂志,1999,7(3):197-200.
[5] Mitani H,Takimoto M,Bandoh T,et al. Increases of vascular endothelin-converting enzyme activity and endothelin-1 level on atherosclerotic lesions in hyperlipidemic rabbits [J]. Eur J Pharmacol,2000,387(3):313-319.
[6] 潘志红,李东霞,张江蓉,等.不同程度动脉粥样硬化症患者血浆内皮素和一氧化氮水平的研究[J].中国综合临床,2003,19(7):590-592.
[7] Judkins CP,Diep H,Broughton BR,et al. Direct evidence of a role for Nox2 in superoxide production,reduced nitric oxide bioavailability,and early atherosclerotic plaque formation in ApoE-/- mice [J]. Am J Physiol Heart Circ Physiol,2010,298(1):24-32.
[8] Tan MS,Lee YJ,Shin SJ,et al. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells [J]. J Lab Clin Med,1997,129(2):224-30.
[9] 刘月玲,朱秋玲.参七粉对动脉粥样硬化家兔模型血脂代谢和血管内皮功能的影响[J].中国医药导报,2012,9(6):26-28.
[10] Kobayashi T,Tahara Y,Matsumoto M,et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J Clin Invest,2004 ,114(6):784-794.
[11] Armstrong DA. Oxidized LDL,ceroid and prostaglandin metabolism in human atherosclerosis [J]. Med Hypotheses,1992,38(3):244.
[12] Hohlfeld T,Scharnowski F,Braun M,et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia [J]. Thromb Haemost,1994,71(1):112-118.
[13] Chetty N,Naran NH. Platelet hyperreactivity in hyperlipidaemia with specific reference to platelet lipids and fatty acid composition [J]. Clin Chim Acta,1992 ,213(1-3):1-13.
[14] Aslam R,Saeed SA,Ahmed S,et al. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia [J]. Clin Exp Pharmacol Physiol,2008 ,35(5-6):656-662.
[15] Gross PL,Rand ML,Barrow DV,et al. Platelet hypersensitivity in cholesterol-fed rabbits:enhancement of thromboxane A2-dependent and thrombin-induced,thromboxane A2-independent platelet responses [J]. Atherosclerosis,1991,88(1):77-86.
(收稿日期:2013-11-30 本文编辑:程 铭)
本模型显示经高胆固醇饮食后,兔ADP诱导的MPA明显升高,与文献报道相似,但对其动脉粥样病变形成起作用较小[12],与本模型不相符,可能与内皮剥脱差异有关。高胆固醇血症时可能血小板和血浆中花生四烯酸含量明显增高[13-14],而表现出血小板高反应性(血小板聚集率明显升高、TXA2合成增加等)。此外,本模型并未发现其血小板计数的变化,与文献报道相似[15]。
经多元回归分析后显示,动脉狭窄程度主要与血浆TXB2浓度及ADP诱导的MPA相关,在一定程度上体现了血小板分泌、聚集功能的变化在此模型中起着不可忽视作用,也反映了动脉粥样硬化模型形成中,脂质浸润学说、内皮细胞损伤学说及血栓学说间存在一定的内在联系。
[参考文献]
[1] 孙宝贵,傅世英,黄永麟,等.实验性家兔动脉粥样硬化狭窄模型[J].中国介入心脏病学杂志,1995,3(2):67-68.
[2] Tribouilloy CM,Peltier M,Iannetta-Peltier MC,et al. Relation between low-density lipoprotein cholesterol and thoracic aortic atherosclerosis [J]. Am J Cardiol,1999,84(5):603-605,A9.
[3] Alavi MZ,Wasty F,Li Z,et al. Enhanced incorporation of [14C] glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro [J]. Atherosclerosis,1992,95(1):59-67.
[4] 徐少平,李鲁光,唐朝枢,等.一氧化氮及其合酶在家兔粥样硬化动脉的改变及L-精氨酸的作用[J].中国动脉硬化杂志,1999,7(3):197-200.
[5] Mitani H,Takimoto M,Bandoh T,et al. Increases of vascular endothelin-converting enzyme activity and endothelin-1 level on atherosclerotic lesions in hyperlipidemic rabbits [J]. Eur J Pharmacol,2000,387(3):313-319.
[6] 潘志红,李东霞,张江蓉,等.不同程度动脉粥样硬化症患者血浆内皮素和一氧化氮水平的研究[J].中国综合临床,2003,19(7):590-592.
[7] Judkins CP,Diep H,Broughton BR,et al. Direct evidence of a role for Nox2 in superoxide production,reduced nitric oxide bioavailability,and early atherosclerotic plaque formation in ApoE-/- mice [J]. Am J Physiol Heart Circ Physiol,2010,298(1):24-32.
[8] Tan MS,Lee YJ,Shin SJ,et al. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells [J]. J Lab Clin Med,1997,129(2):224-30.
[9] 刘月玲,朱秋玲.参七粉对动脉粥样硬化家兔模型血脂代谢和血管内皮功能的影响[J].中国医药导报,2012,9(6):26-28.
[10] Kobayashi T,Tahara Y,Matsumoto M,et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J Clin Invest,2004 ,114(6):784-794.
[11] Armstrong DA. Oxidized LDL,ceroid and prostaglandin metabolism in human atherosclerosis [J]. Med Hypotheses,1992,38(3):244.
[12] Hohlfeld T,Scharnowski F,Braun M,et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia [J]. Thromb Haemost,1994,71(1):112-118.
[13] Chetty N,Naran NH. Platelet hyperreactivity in hyperlipidaemia with specific reference to platelet lipids and fatty acid composition [J]. Clin Chim Acta,1992 ,213(1-3):1-13.
[14] Aslam R,Saeed SA,Ahmed S,et al. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia [J]. Clin Exp Pharmacol Physiol,2008 ,35(5-6):656-662.
[15] Gross PL,Rand ML,Barrow DV,et al. Platelet hypersensitivity in cholesterol-fed rabbits:enhancement of thromboxane A2-dependent and thrombin-induced,thromboxane A2-independent platelet responses [J]. Atherosclerosis,1991,88(1):77-86.
(收稿日期:2013-11-30 本文编辑:程 铭)
本模型显示经高胆固醇饮食后,兔ADP诱导的MPA明显升高,与文献报道相似,但对其动脉粥样病变形成起作用较小[12],与本模型不相符,可能与内皮剥脱差异有关。高胆固醇血症时可能血小板和血浆中花生四烯酸含量明显增高[13-14],而表现出血小板高反应性(血小板聚集率明显升高、TXA2合成增加等)。此外,本模型并未发现其血小板计数的变化,与文献报道相似[15]。
经多元回归分析后显示,动脉狭窄程度主要与血浆TXB2浓度及ADP诱导的MPA相关,在一定程度上体现了血小板分泌、聚集功能的变化在此模型中起着不可忽视作用,也反映了动脉粥样硬化模型形成中,脂质浸润学说、内皮细胞损伤学说及血栓学说间存在一定的内在联系。
[参考文献]
[1] 孙宝贵,傅世英,黄永麟,等.实验性家兔动脉粥样硬化狭窄模型[J].中国介入心脏病学杂志,1995,3(2):67-68.
[2] Tribouilloy CM,Peltier M,Iannetta-Peltier MC,et al. Relation between low-density lipoprotein cholesterol and thoracic aortic atherosclerosis [J]. Am J Cardiol,1999,84(5):603-605,A9.
[3] Alavi MZ,Wasty F,Li Z,et al. Enhanced incorporation of [14C] glucosamine into glycosaminoglycans of aortic neointima of balloon-injured and cholesterol-fed rabbits in vitro [J]. Atherosclerosis,1992,95(1):59-67.
[4] 徐少平,李鲁光,唐朝枢,等.一氧化氮及其合酶在家兔粥样硬化动脉的改变及L-精氨酸的作用[J].中国动脉硬化杂志,1999,7(3):197-200.
[5] Mitani H,Takimoto M,Bandoh T,et al. Increases of vascular endothelin-converting enzyme activity and endothelin-1 level on atherosclerotic lesions in hyperlipidemic rabbits [J]. Eur J Pharmacol,2000,387(3):313-319.
[6] 潘志红,李东霞,张江蓉,等.不同程度动脉粥样硬化症患者血浆内皮素和一氧化氮水平的研究[J].中国综合临床,2003,19(7):590-592.
[7] Judkins CP,Diep H,Broughton BR,et al. Direct evidence of a role for Nox2 in superoxide production,reduced nitric oxide bioavailability,and early atherosclerotic plaque formation in ApoE-/- mice [J]. Am J Physiol Heart Circ Physiol,2010,298(1):24-32.
[8] Tan MS,Lee YJ,Shin SJ,et al. Oxidized low-density lipoprotein stimulates endothelin-1 release and mRNA expression from rat mesangial cells [J]. J Lab Clin Med,1997,129(2):224-30.
[9] 刘月玲,朱秋玲.参七粉对动脉粥样硬化家兔模型血脂代谢和血管内皮功能的影响[J].中国医药导报,2012,9(6):26-28.
[10] Kobayashi T,Tahara Y,Matsumoto M,et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J Clin Invest,2004 ,114(6):784-794.
[11] Armstrong DA. Oxidized LDL,ceroid and prostaglandin metabolism in human atherosclerosis [J]. Med Hypotheses,1992,38(3):244.
[12] Hohlfeld T,Scharnowski F,Braun M,et al. Antiplatelet effects of ticlopidine are reduced in experimental hypercholesterolemia [J]. Thromb Haemost,1994,71(1):112-118.
[13] Chetty N,Naran NH. Platelet hyperreactivity in hyperlipidaemia with specific reference to platelet lipids and fatty acid composition [J]. Clin Chim Acta,1992 ,213(1-3):1-13.
[14] Aslam R,Saeed SA,Ahmed S,et al. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia [J]. Clin Exp Pharmacol Physiol,2008 ,35(5-6):656-662.
[15] Gross PL,Rand ML,Barrow DV,et al. Platelet hypersensitivity in cholesterol-fed rabbits:enhancement of thromboxane A2-dependent and thrombin-induced,thromboxane A2-independent platelet responses [J]. Atherosclerosis,1991,88(1):77-86.
(收稿日期:2013-11-30 本文编辑:程 铭)