氟对茶树生长叶片营养元素含量、 儿茶素类物质和香气成分的影响
2014-04-01王丽霞汤举红杨亚军
王丽霞, 汤举红, 肖 斌, 杨亚军, 柳 洁
(1 西北农林科技大学园艺学院,陕西杨凌 712100; 2 长江师范学院生命科学与技术学院,重庆涪陵 408000;3 中国农业科学院茶叶研究所,浙江杭州 310013)
氟并不是植物的必需元素,植物吸氟后,会产生抑制光合[8],引起细质渗漏[9],改变糖类和脂类的代谢,抑制酶活性[10]等生理作用。茶叶中的儿茶素类物质如 EGCG、 EGC、 EC、 ECG是构成茶叶品质与风味的主要成分,具有抗氧化活性[11]。茶氨酸和咖啡碱也是茶叶中天然存在的化合物,是儿茶素的合成前体[12],可以刺激人体中枢神经系统,提高人体的免疫能力[13]。茶叶的香气主要由易挥发的芳香物质构成,是评价茶叶品质优良与否的重要指标。茶叶的香气成分受多种因素的影响,包括品种、 栽培条件、 环境因素和加工条件等。Yang等证明遮阴条件显著影响茶叶的香气成分[14],张灵枝等证明不同的干燥方式也会对茶叶的香气成分产生影响[15]。金属元素钾、 钙、 镁、 铁和锌既是植物生长的必需元素,也是人体所需的营养元素。研究叶片中这些营养物质在氟处理条件下含量的变化,有助于揭示氟对茶树茶叶品质的影响。因而,本试验拟通过茶苗的水培试验,研究营养液中不同浓度氟对茶树干物质积累,相对生长率,营养元素吸收,叶片儿茶素类物质和香气组分的影响,初步探究氟影响茶叶生长、 品质及生理代谢的机理。
1 材料与方法
1.1 材料的培养
1.2 样品的采集与测定
不同氟水平处理5周后收获整株茶苗,先用自来水清洗3次后,再用去离子水冲洗一次。用滤纸吸干水分后,记录植株鲜重及干重,计算相对生长率(R),R= (lnW2- lnW1)/(T2- T1),其中W1和W2分别为时间T1和T2的整株干重,T2- T1为处理时间, 单位为g/(g·d),DW。选取新长出的顶部嫩叶、 嫩茎和根,洗净后立刻用液氮超低温保存或干燥后储存在真空干燥器中,用于后续试验指标的测定。
1.3 统计分析
用Excel进行试验数据的基本计算,OriginPro 8.5.1软件进行统计分析,显著水平分别为0.01和0.05(Fisher LSD方法)。
2 结果与分析
2.1 氟水平对茶苗生长的影响
与对照相比,不同氟水平对茶苗根、 茎和叶干重的影响不同(表1)。0.1 mmol/L 氟水平下茶苗干重增加了3%,而0.2和0.3 mmol/L氟水平下茶苗干重降低了2.1% 和 6.4%;0.1 mmol/L 氟水平下茶苗相对生长率增加,比对照增加了8.8%,而0.2和0.3 mmol/L氟水平下茶苗相对生长率分别降低了8.1%和15.5%。
表1 不同浓度氟对茶苗不同部位干物质量和相对生长率的影响Table 1 Effect of different fluoride contents on dry weight and relative growth rate of tea seedlings
注(Note): 同列数值后不同小写字母表示处理间差异达5%显著水平 Different lower letters at the same column mean significantly different at the 5% level.
2.2 不同浓度氟处理对茶苗叶片营养元素含量的影响
不同氟水平处理对茶苗叶片不同营养元素含量的影响不同(表2)。随着氟处理浓度的增大,茶苗叶片氮、 钾、 镁、 铁、 锌与碳酸氢根的含量显著降低,而磷、 钙和氟的含量显著增加,其中叶片氟的含量达到极显著水平。氟处理对茶苗叶片中氯离子含量的影响不明显。
2.3 不同浓度氟处理对茶苗叶片儿茶素、 茶氨酸、 咖啡碱含量的影响
随着氟处理浓度的增大,叶片茶素类物质的含量呈下降趋势,除EGC的变化不明显外,EC、 EGCG、 ECG的含量均显著地下降了约20.7%、 23.5%、 50.4%(在0.3 mmol/L 氟处理下)。 此外,氟处理也显著地降低了叶片茶氨酸和咖啡碱的含量,在0.2 mmol/L 氟处理下,茶氨酸降低了19.4%,咖啡碱降低了15.5%(表3)。
表2 氟处理对茶苗叶片营养元素含量的影响Table 2 Effect of F treatments on nutrient element contents in tea leaves
注(Note): 同行数值后不同小写字母表示处理间差异达5%显著水平,大写字母表示1%显著水平 Different small letters at the same row mean significantly different at the 5% level and capital letters mean significantly different at the 1% level.
2.4 不同浓度氟处理对茶苗叶片香气成分的影响
通过测定茶苗叶片香气含量,共发现68种香气成分(表4)。由于各种香气成分的含量很低,本试验对叶片的香气成分进行了归类,共分成烷类、 醛类、 醇类、 酯类、 酸类、 芳香、 酮类、 杂环、 胺类等9种;其中醛、 醇、 酯和芳香类是茶叶香气物质的主要成分。氟处理对这几类物质含量的影响不同(图1)。对烷类、 酸类、 杂环类、 胺类和酮类物质含量的影响不大,但对醛、 醇、 酯和芳香类物质的影响较大,0.2 mmol/L F处理降低了叶片醛、 醇、 酯和芳香类物质的含量,而0.3 mmol/L F处理增加了醛、 醇、 酯和芳香类物质的含量。
表3 氟处理对叶片茶氨酸、 儿茶素和咖啡碱含量的影响(mg/g, DW)Table 3 Effect of F on the contents of catechins, theanine and caffeine in tea leaves
注(Note): THE—茶氨酸 Theanine; EGC—表没食子儿茶素 Epigallocatechin; CAF—咖啡碱 Caffeine; EC—表儿茶素 Epicatechin; EGCG—表没食子儿茶素没食子酸酯 Epigallocatechin gallate; ECG—表儿茶素没食子酸酯 Epicatechin gallate; 同列数值后不同小写字母表示处理间差异达5%显著水平 Different lower letters at the same column mean significantly different at the 5% level.
表4 不同浓度氟处理对茶苗叶片香气成分含量的影响(mg/kg)Table 4 Effect of different fluoride concentrations on the leaf volatiles contents
续表4Table4continuos
香气成分 The aroma compountsCK0.1 mmol/L F0.2 mmol/L F0.3 mmol/L F6-甲基-5-庚烯-2-酮 5-Hepten-2-one, 6-methyl-——0.0120.0162-正戊基呋喃 Furan, 2-pentyl-0.0190.0190.0220.0272-甲基-6-庚烯醇 6-Hepten-1-ol, 2-methyl-0.1090.1080.1420.152cis-2-(2-戊烯基)呋喃 Cis-2-(2-Pentenyl)furan0.019———3-己酸乙酯 3-Hexenoic acid, ethyl ester—0.0200.0260.0533-甲基-3-庚醇 3-Heptanol, 3-methyl-0.0150.0110.0140.030(E,E)-2,4-庚二烯醛 2,4-Heptadienal, (E,E)-0.0200.0220.0260.0392-乙基-4甲基-戊醇 1-Pentanol, 2-ethyl-4-methyl-0.0270.0170.0290.024苯甲醇 Benzyl alcohol0.3300.4000.4090.709苯乙醛 Benzeneacetaldehyde0.0110.0120.0150.0283-己酸乙酯 2-Hexenoic acid, ethyl ester———0.041(E)-2-辛烯醛 2-Octenal, (E)-———0.013环辛醇 Cyclooctyl alcohol 0.0100.0110.0150.018反-氧化芳樟醇 Trans-Linalool oxide 0.2040.1160.2250.185戊基环丙烷 Cyclopropane, pentyl-0.0340.0420.0520.0472-(5-甲基-5-乙烯四氢呋喃-2-yl)丙烷-2-ly-碳酸乙酯 Ethyl-2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate0.2620.1750.1990.2703,3-二甲基-庚烷 Heptane, 3,3-dimethyl-———0.010芳樟醇 1, 6-Octadien-3-ol, 3,7-dimethyl-1.4981.6222.2142.618壬醛 Nonanal0.0400.0340.0420.048苯乙醇 Phenylethyl Alcohol0.1670.1160.2240.3202-硝基苯酚 Phenol, 2-nitro-0.0200.0150.0270.0294-甲基-癸烷 Decane, 4-methyl-0.0110.0120.0180.0191,1-双(十二烷氧基)-十六烷 Hexadecane, 1,1-bis(dodecyloxy)-0.0150.0130.0230.0212,3-二甲基癸烷 2,3-Dimethyldecane0.0220.0240.0260.0271-乙基-2(1H)吡啶 2(1H)-Pyridinone, 1-ethyl-0.0110.0100.0140.0241-癸醇 1-Decanol0.0310.0300.0520.048异亮氨酰丝氨酸 Ile-Ser0.0140.0090.0140.016水杨酸甲酯 Methyl salicylate3.3831.6111.7141.581alpha-松油醇 α-Terpineol0.0130.0160.0200.0221-甲基马鞭草烯醇 1-Methylverbenoll0.0150.0140.010—辛酸乙酯 Octanoic acid, ethyl ester———0.0255-乙基癸烷 5-Ethyldecane—0.0130.0170.021癸醛 Decanal 0.0130.0150.0220.0277-甲基-3-亚甲基-6辛烯醇 6-Octen-1-ol, 7-methyl-3-methylene-0.0260.0230.0260.038
续表4Table4continuos
香气成分 The aroma compountsCK0.1 mmol/L F0.2 mmol/L F0.3 mmol/L F橙花醇 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-0.0610.0590.0690.082(Z)-3,7-二甲基-3,6-辛二烯醇3,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-0.0370.0330.0400.0432-硝基-4-甲苯酚 Phenol, 4-methyl-2-nitro-0.0100.0090.0200.014香叶醇 Geraniol 0.1260.1130.1110.109(Z)-2-癸烯醛 2-Decenal, (Z)-0.0220.0170.0170.030水杨酸乙酯 Benzoic acid, 2-hydroxy-, ethyl ester0.3810.9240.7802.0902-1-亚乙基-1H-茚 1H-Indene, 1-ethylidene-0.0260.0120.0180.02111-氧杂四环十二烷-9-酮 11-Oxatetracyclo-dodecan-9-one0.0440.0230.0280.032(1-烯丙基环丙烷)甲醇 (1-Allylcyclopropyl)methanol0.0210.0240.0160.0226a-甲基-1,6-二环戊双酮 6a-Methyl-hexahydropentalene-1,6-dione0.0150.0120.0100.019正十四烷 Tetradecane0.0100.0180.0140.0181,5-二甲基-萘 Naphthalene, 1,5-dimethyl-0.009———(E)-6,10-二甲基-5,9-十一双烯-2-酮 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-——0.0090.0134甲基-1-(1-异丙基)-环己醇 Cyclohexanol, 4-methyl-1-(1-methylethyl)-0.0180.0190.0190.032反-α-紫罗酮 Trans-α-Ionone0.015———正十五烷 Pentadecane——0.0090.013石竹素 Caryophyllene oxide0.0180.0190.0190.0323,7,11-三甲基-1,6,10-十二烷三烯-3-醇 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-0.0200.0230.0270.030十六烷 Hexadecane0.0210.0260.0340.040
注(Note): “—”表示未检测出 Means no detected.
图1 不同浓度氟对茶苗叶片香气成分不同种类总量的影响 Fig.1 Effect of different fluoride contents on leaf volatile components in tea seedlings
3 讨论
本试验中氟的短期处理(5周)降低了茶苗干物质积累量和相对生长率,但是与对照相比,未达到显著效果,而在唐茜等[17]试验中,氟处理(19月)显著降低了茶苗地上部干物质量,这可能与氟处理时间有关。此外,也表明外源氟处理能抑制茶苗的生长,这可能与氟抑制叶片正常的光合作用有关, Zwiazek and Shay[23]证明氟能够破坏植物叶肉细胞的膜结构,引起脂质和叶绿体淀粉颗粒的渗漏,导致气孔的非正常关闭,降低了叶片的光合性能,从而降低了植株的生长和代谢能力。
参考文献:
[1] Sofuoglu S C, Kavcar P. An exposure and risk assessment for fluoride and trace metals in black tea[J]. J.Hazard. Mater., 2008, 158: 392-400.
[2] 马立锋, 石元值, 阮建云, 等. 湘、 鄂砖茶主产区茶园土壤氟含量状况及影响因素[J]. 茶叶科学, 2002, 22(1): 34-37.
Ma L F, Shi Y Z, Ruan J Yetal. Status of fluorine in the soils of tea gardens in brick tea areas of Hunan, Hubei Provinces and its affecting factors[J]. Tea Sci., 2002, 22(1): 34-37.
[3] Xie Z, Chen Z, Sun Wetal. Distribution of aluminum and fluoride in tea plant and soil of tea garden in central and Southwest China[J]. Chin. Geogr. Sci., 2007, 17: 376-382
[4] Fung K F, Zhang Z Q, Wong J W Cetal. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion[J]. Environ. Pollut.,1999, 104: 197-205.
[5] Messaitfa A. Fluoride contents in groundwaters and the main consumed foods (dates and tea) in Southern Algeria region[J]. Environ. Geol., 2008, 55: 377-383.
[6] Li H, Liu Q, Wang Wetal. Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China[J]. J. Hazard. Mater., 2009, 167: 892-895.
[7] Malinowska E, Inkielewicz I, Czarnowski Wetal. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions[J]. Food Chem. Toxicol. 2008, 46: 1055-1061.
[8] Choi D S, Kayama M, Jin H Oetal. Growth and photosynthetic responses of two pine species (PinuskoraiensisandPinusrigida) in a polluted industrial region in Korea[J]. Environ. Pollut., 2006, 139: 421-432.
[9] Zwiazek J J, Shay J M. The effects of sodium fluoride on cytoplasmic leakage and the lipid and fatty acid composition of jack pine (Pinusbanksiana) seedlings[J]. Can. J. Bot., 1988, 66: 535-541.
[10] Facanha A R, Meis L D. Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes[J]. Plant Physiol., 1995, 108: 241-245.
[11] Gradisar H, Pristovsek P, Plaper Aetal. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site[J]. J. Med. Chem., 2007, 50: 264-271.
[12] Song R, Kelman D, Johns K Letal. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camelliasinensis) grown in Hawaii[J]. Food Chem., 2012, 133: 707-714.
[13] Kimura K, Ozeki M, Juneja Letal. L -Theanine reduces psychological and physiological stress responses[J]. Biol. Psychol., 2007, 74: 39-45.
[14] Yang Z Y, Kobayashi E, Katsuno Tetal. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camelliasinensi) plants in the dark[J]. Food Chem., 2012, 135: 2268-2276.
[15] 张灵枝, 陈维信, 王登良,等. 不同干燥方式对普洱茶香气的影响研究[J]. 茶叶科学, 2007, 27(1): 71-75.
Zhang L Z, Chen W X, Wang D Letal. Effect of drying methods on the aromatic character of Pu-erh tea[J]. Tea Sci., 2007, 27(1): 71-75.
[16] Konishi S, Miyamoto S, Taki T. Stimulatory effects of aluminum on tea plants grown under low and high phosporus supply[J]. Soil Sci. Plant Nutr., 1985, 31: 361-368.
[17] 唐茜, 赵先明, 杜晓,等. 氟对茶树生长、 叶片生理生化指标与茶叶品质的影响[J]. 植物营养与肥料学报, 2011, 17(1): 186-194.
Tang Q, Zhao X M, Du Xetal. Effects of fluorine stress on growth, physiological-biochemical characteristics and quality of tea leaves[J]. Plant Nutr. Fert. Sci., 2011, 17(1): 186-194.
[18] Behrendt A, Oberste V, Wetzel W E. Fluoride concentration and pH of iced tea products[J]. Caries Res., 2002, 36: 405-410.
[19] 范宝磊, 张健, 索有瑞. 原子吸收光谱和原子荧光光谱法测定藤茶中微量元素含量[J]. 分析科学学报, 2010, 26(5): 611-613.
Fan B L, Zhang J, Suo Y R. Determination of trace elements in Tengcha by atomic absorption spectrometry and atomic fluorescence spectrometry[J]. J. Anal. Sci., 2010, 26(5): 611-613.
[20] 劳家柽.土壤农化分析手册[M]. 北京: 中国农业出版社,1988. 368-372.
Lao J S. Soil chemical analysis manual[M]. Beijing: China Agriculture Press, 1988. 368-372.
[21] 施倩, 陈林, 张正竹,等. 茶叶中L-茶氨酸HPLC-PDAD分析方法的建立[J]. 安徽农业大学学报, 2006, 33(3): 347-350.
Shi Q, Chen L, Zhang Z Zetal. A method for determination of L-theanine with HPLC-PDAD in tea[J]. J. Anhui Agric. Univ., 2006, 33(3): 347-350.
[22] 叶乃兴, 杨广, 郑乃辉, 等. 烘青茶坯香气成分的SPME/GC-MS分析[J]. 福建农林大学学报(自然科学版), 2006, 36(2): 165-168.
Ye N X, Yang G, Zhen N Hetal. Analysis of the aroma of refined baked green tea using SPME/GC-MS[J]. J. Fujing Agric. For. Univ.(Nat. Sci. Ed.), 2006, 36(2): 165-168.
[23] Zwiazek J J, Shay J M. Fluoride and drought-induced structural alterations of mesophyll and guard cells in cotyledons of jack pine (Pinusbanksiana)[J]. Can. J. Bot. 1987, 65: 2310-2317.
[24] 李丽霞,杜晓,何春雷.水培茶苗对氟的吸收累积特性[J], 四川农业大学学报, 2008,26(1): 59-63.
Li L X, Du X, He C L. Absorptionand accumulation characteristics of fluorine in nutrient liquid cultured tea plant[J]. J. Sichuan Agric. Univ., 2008, 26(1): 59-63.
[25] Linkohr B I, Williamson L C, Fitter A Hetal. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis[J]. Plant J., 2002, 29: 751-760.
[26] Shevela D, Eaton-Rye J J, Shen J Retal. Photosystem II and the unique role of bicarbonate: A historical perspective[J]. Biochim. Biophys. Acta, 2012, 1817: 1134-1151.
[27] Kamaluddin M, Zwiazek J J. Fluoride inhibits root water transport and affects leaf expansion and gas exchange in aspen(Populustremuloides) seedlings. Physiologia Plantarum, 2003,117: 368-375.
[28] Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+by Na+from the plasmalemma of root cells[J]. Plant Physiol., 1985, 79: 207-211
[29] Franklina J A, Zwiazek J J. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate[J]. Physiol. Plant., 2004, 120: 482-490.
[30] Reddy M P, Kaur M. Sodium fluoride induced growth and metabolic changes inSalicorniabrachiataRoxb[J]. Water Air Soil Pollut., 2008, 188: 171-179.
[31] 李琼, 阮建云. 氟对茶叶品质成分代谢的影响[J], 茶叶科学, 2009, 29: 207-211.
Li Q, Yuan J Y. Effects of fluoride on the metabolism of tea quality components[J]. Tea Sci., 2009, 29: 207-211.
[32] Li C L. Effect of fluoride on chemical consitituents of tea leaves[J]. Fluoride, 2009, 42: 237-243.