APP下载

牵拉对毒蕈碱受体和5-羟色胺受体介导大鼠离体胃平滑肌收缩功能的影响

2014-03-22王东凯任雪姣卢丹丹任雷鸣

中国药理学与毒理学杂志 2014年4期
关键词:胃体贲门胃窦

王东凯,任雪姣,卢丹丹,任雷鸣

(1.河北医科大学中西医结合学院,河北石家庄 050017;2.河北医科大学第四医院,河北石家庄 050011)

牵拉对毒蕈碱受体和5-羟色胺受体介导大鼠离体胃平滑肌收缩功能的影响

王东凯1∗,任雪姣2∗,卢丹丹1,任雷鸣1

(1.河北医科大学中西医结合学院,河北石家庄 050017;2.河北医科大学第四医院,河北石家庄 050011)

目的 研究牵拉对毒蕈碱(M)受体及5-羟色胺(5-HT)受体介导大鼠离体胃平滑肌收缩功能的影响。方法 大鼠离体胃底、胃体、胃窦、贲门和幽门环行肌标本分别给予1.0,1.5,2.0,2.5和3.0 g的前负荷,除胃窦环肌给予单浓度卡巴胆碱(CCh)(0.3 μmol·L-1)外,其余标本采用累积给药法给予CCh 0.001~30 μmol·L-1,5-HT 0.0001~30 μmol·L-1,记录收缩反应。结果 大鼠胃底、胃体和幽门环肌在1.0 g前负荷下,CCh诱发收缩反应的-Log EC50值最大,-Log EC50值随前负荷升高而显著减小(P<0.05,P<0.01);5-HT诱发胃底环行肌收缩反应结果类似。与1.0 g前负荷相比,3.0 g前负荷时CCh和5-HT诱发贲门环肌收缩反应的 Emax值分别增大117.4%和75.7%;5-HT诱发胃体环肌收缩反应的 Emax值亦增大115.9%。CCh诱发各环行肌收缩的Emax值(g)分别为:贲门10.453±2.956(3.0 g前负荷)、胃底13.878± 2.618(2.5 g前负荷)、胃体10.244±1.843(2.5 g前负荷)、幽门2.585±1.098(2.5 g前负荷)。5-HT诱发各环肌收缩的Emax值(g)分别为:贲门4.363±1.705(3.0 g前负荷)、胃底3.931±0.615(3.0 g前负荷)、胃体3.161±0.680(3.0 g前负荷)。结论 0.5 g或1.0 g前负荷不适于研究M受体和5-HT受体介导的大鼠离体贲门、胃底、胃体和幽门环肌的收缩反应,2.0 g前负荷可能是研究M受体和5-HT受体介导大鼠离体胃环肌收缩反应的理想条件。

受体,毒蕈碱;受体,5-羟色胺;牵拉;胃体;胃底;贲门;幽门

胃平滑肌条是医学研究中的常用实验标本,受体激动剂诱发收缩反应的半数有效量(EC50)和最大反应(Emax)是2个关键参数。国内文献报道,大鼠离体胃平滑肌条常施予1.0 g前负荷[1-3];国外文献中,前负荷差异较大,0.5 g[4],1.0 g[5-8]和2.0 g[9-10]均有报道,但未注明前负荷选择的理由。国外曾有报道,不同前负荷能影响人支气管平滑肌[11]和犬冠状动脉平滑肌[12]标本的收缩效能;Ren等[13]报道,在兔离体血管环肌标本,不同程度牵拉对α1受体介导收缩的EC50值有显著影响,推测不同前负荷对不同受体介导平滑肌收缩的影响不同。

哺乳动物大约95%的5-羟色胺(5-hydroxy-tryptamine,5-HT)存在于胃肠道[14];5-HT1A和5-HT1D受体激动剂可调节胃动力。舒马曲坦激活5-HT1B/1D受体,对功能性消化不良患者可松弛胃底(延迟胃排空),改善胃的顺应性,减轻胃胀和早饱感[15]。乙酰胆碱(acetylcholine,ACh)是副交感神经的递质,能激动各类胆碱受体,兴奋胃肠平滑肌。

本研究以卡巴胆碱(carbachol,CCh)和5-HT作为胃平滑肌收缩剂,分析不同牵拉程度对M受体和5-HT受体介导收缩的影响,各激动剂产生收缩时药物EC50值和Emax值的变化规律。

1 材料与方法

1.1 药品、实验动物和仪器

CCh购自德国ABCR GmbH&Co KG公司,5-HT购自日本Kasei Kogyo Co Ltd公司。K-H液成分(mmol·L-1):NaCl 133、KCl 4.7、MgSO40.61、NaH2PO41.35、CaCl22.52、NaHCO316.3、葡萄糖7.8,pH 7.2,均购自美国Sigma公司。30只健康雄性Wistar大鼠,体质量 250~300 g,许可证号SCXK(冀)2013-1-003,由河北省实验动物中心提供。PowerLab 8/35型数据采集系统(包括Octal Bridge Amp、张力换能器)由澳大利亚AD Instruments Pty Ltd生产;CP213型电子天平是美国Ohaus Corporation公司产品。

1.2 离体胃平滑肌标本的制备

大鼠禁食不禁水12 h,乌拉坦1.5 g·kg-1皮下注射麻醉后颈动脉放血处死,取全胃。沿胃大弯剪开,以95%O2+5%CO2、4℃改良K-H液中漂洗干净,沿环肌方向切取腹侧胃底、胃体、胃窦、贲门和幽门环肌5个部位[16-17]。每只大鼠取胃底环肌2条、胃体环肌2条以及胃窦、贲门和幽门环肌各1条,分别长约2 mm×8 mm,去除黏膜。标本一端固定于支架上,另一端接张力换能器,置于(37±0.5)℃的K-H液浴槽中。

胃底、胃体、胃窦、贲门和幽门环肌分别给予1.0,1.5,2.0,2.5和3.0 g的前负荷。在各自前负荷下平衡1 h(每15 min换1次K-H液)后开始实验。胃底、胃体、贲门和幽门环肌采用累积给药法给予CCh(0.001~30 μmol·L-1);5种标本均累积给予 5-HT(0.0001~30 μmol·L-1)。预实验显示,<0.3 μmol·L-1时,胃窦环肌的节律性收缩与强直性收缩区分不明显,难以分析数据;>0.3 μmol·L-1时,收缩的节律紊乱。故胃窦环肌采用单浓度(0.3 μmol·L-1)给药法[18]。每个标本依次在5个前负荷下完成一种药物的5次量效曲线,张力换能器记录收缩反应(g)。

1.3 统计学分析

2 结果

2.1 牵拉对CCh诱发胃平滑肌收缩的影响

CCh 0.001~30 μmol·L-1可使大鼠离体贲门、胃底、胃体和幽门环肌产生浓度依赖性收缩反应。双因素方差分析显示,贲门、胃底和胃体环肌在1.5,2.0,2.5和3.0 g前负荷下,CCh诱发的收缩显著大于1.0 g的收缩(P<0.05,P<0.01;图1A~C)。但是幽门环肌在1.0,1.5,2.0,2.5和3.0 g前负荷下,CCh诱发的收缩无统计学差异(图1D)。图2结果显示,单浓度给予CCh 0.3 μmol·L-1时,胃窦环肌在1.0,1.5,2.0,2.5和3.0 g前负荷下,CCh诱发的胃窦环肌强直性收缩的振幅随前负荷增加而下降,但无统计学差异(图2A)。CCh诱发的胃窦节律性收缩振幅随前负荷的增加而增强,前负荷2.0 g时收缩振幅显著强于1.0 g(P<0.01,图2B);前负荷2.5 g和3.0 g时收缩振幅与2.0 g相似(图2B)。胃窦环肌收缩频率与前负荷(1.0 g~3.0 g)呈明显的负相关(图2C),由1.0 g时的5.5 min-1降至3.0 g时的1.4 min-1(P<0.01);胃窦环肌首先呈强直性收缩,继而为长时程节律性收缩(图2D)。

2.2 牵拉对5-HT诱发胃平滑肌收缩的影响

5-HT 0.0001~30 μmol·L-1可使大鼠离体贲门、胃底和胃体环肌产生浓度依赖性收缩。双因素方差分析显示,贲门、胃底和胃体环肌在2.0,2.5和3.0 g前负荷下,5-HT诱发的收缩显著大于1.0 g时收缩(P<0.05,P<0.01;图3A~C)。5-HT对胃窦和幽门环肌无明显作用(数据略,n=8)。

Fig.1 Contractile responses to carbachol(0.001-30 μmol·L-1)in isolated circular muscle strips of rat gastric cardia(A,n=9),fundus(B,n=20),gastric body(C,n=18)and pylorus(D,n=10)under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g..∗P<0.05,∗∗P<0.01 compared with preload 1.0 g.

Fig.2 Responses to carbachol 0.3 μmol·L-1in isolated circular muscle strips of rat gastric antrum.A:stiffnass amplitude;B:rhythmamplitude;C:rhythm frequency.,n=6.∗P<0.05,∗∗P<0.01 compared with preload 1.0 g.

Fig.3 Contractile responses to 5-hydroxytryptamine(5-HT,0.0001-30 μmol·L-1)in isolated circular muscle strips of the rat gastric cardia(A,n=12),fundus(B,n=7)and gastric body(C,n=7)under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g..∗P<0.05,∗∗P<0.01,compared with preload 1.0 g.

2.3 牵拉对CCh和5-HT诱发最大收缩和EC50的影响

单因素方差分析显示(表1),贲门、胃底和胃体环肌在1.0~3.0 g前负荷下,CCh诱发的最大收缩反应(Emax)随着牵拉强度增大而升高;幽门环肌则无显著改变。4种环肌的实测Emax值(CCh)分别为:贲门10.453±2.956(3.0 g)、胃底13.878±2.618 (2.5 g)、胃体10.244±1.843(2.5 g)和幽门2.585± 1.098(2.5 g)。贲门、胃底和胃体环肌对5-HT的反应类似于CCh,但是其Emax值明显小于CCh;3种标本的实测Emax值(5-HT)分别为:贲门4.363±1.705 (3.0 g)、胃底3.931±0.615(3.0 g)和胃体3.161± 0.680(3.0 g)。以2.5 g的Emax值作为对照进行统计学分析显示,2.0 g和3.0 g前负荷下CCh和5-HT的Emax值无显著差异。

单因素方差分析结果显示(表2),在 1.0~3.0 g前负荷下,CCh和5-HT诱发贲门收缩的EC50值无显著改变,5-HT诱发胃体环肌收缩的EC50值亦无显著改变。在1.0 g前负荷下,CCh和5-HT诱发胃底环肌收缩的-Log EC50(mol·L-1)值分别为6.610±0.237和7.133±0.239;CCh诱发胃体和幽门环肌收缩的-Log EC50(mol·L-1)值分别为6.544±0.148和6.689±0.466。前负荷增至1.5,2.0,2.5和3.0 g时,各自的-Log EC50(mol·L-1)值逐渐变小(P<0.05,P<0.01)。以 2.5 g的-Log EC50值作为对照进行统计学分析结果显示,2.0 g和3.0 g前负荷下CCh和5-HT的-Log EC50值无显著差异。

Tab.1 Emaxof carbachol and 5-HT in various circular muscle strips of rats

Tab.2 -Log EC50of carbachol and 5-HT in various circular muscle strips of rats

3 讨论

本研究显示,0.5 g或1.0 g前负荷不适于研究M受体和5-HT受体介导的大鼠离体贲门、胃底、胃体和幽门环肌收缩。本课题组曾报道,在兔离体血管环标本,不同程度的牵拉(前负荷变化)对α1受体介导收缩的EC50和Emax产生显著影响[13];本研究在大鼠离体胃组织中多个部位的环行肌条上,证实了不同牵拉程度对不同受体介导的平滑肌收缩的影响是不同的。

本研究发现,在1.0~3.0 g(含3.0 g)前负荷时CCh和5-HT诱发贲门环肌收缩、5-HT诱发胃体环肌收缩的EC50值均无改变。但是与1.0 g前负荷相比,3.0 g前负荷时CCh和5-HT诱发贲门肌收缩的Emax值分别增大117.4%和75.7%,5-HT诱发胃体肌收缩的Emax值亦增大115.9%。除胃窦外,与2.5和3.0 g时相比,其他4部位标本施以2.0 g前负荷时,其EC50值和Emax值均无统计学差异。但是,这4部位标本的前负荷低于2.0 g时,多数标本的Emax值显著降低。因此,推荐在2.0 g前负荷作用下,进行M受体和5-HT受体介导的大鼠离体胃平滑肌收缩的研究。鉴于这些标本在1.0 g和1.5 g前负荷下,药物诱发收缩反应的Emax值有较大变化并有统计学意义,因此,选择≤1.0 g的前负荷进行实验显然不合适。

M受体包含5种亚型,M1,M2和M3分布在胃肠道,M2和M3可介导大鼠胃平滑肌收缩,M3作用为主[19-20]。研究发现,大鼠胃底纵肌在1.0 g前负荷作用下,M2和 M3均可介导收缩,M3为主[21]。M2受体基因敲除小鼠的胃底和胃窦环肌在0.5 g前负荷下,CCh诱发收缩的EC50值明显大于野生型小鼠,而收缩的Emax值不变;对于M3受体基因敲除小鼠相同部位,CCh诱发收缩的Emax值降低约50%,EC50值则无明显改变;M2和M3受体基因同时敲除,CCh不再诱发收缩[22]。So等[23]报道,利用膜片钳技术和单细胞RT-PCR技术发现,豚鼠胃窦平滑肌表达M1~M5受体的mRNA,但能被乙酰胆碱激活的只有M2,M3和M4受体。本研究发现,大鼠离体贲门、胃底、胃体和幽门环肌在前负荷相同时(1.0 g,1.5 g或 2.0 g),CCh诱发收缩的-Log EC50值(即 pD2值)均十分接近,提示上述4个部位胃组织中介导CCh诱发收缩的M受体可能相似。然而,在5-HT诱发大鼠贲门、胃底和胃体环肌收缩中,前负荷为1.0 g时的-Log EC50值依次为6.056±0.438,7.133±0.239和6.840±0.316,贲门与胃底环肌的-Log EC50的比值为11.9。前负荷增加至1.5 g,2.0 g或2.5 g时,贲门与胃底或胃体环肌相比,5-HT的-Log EC50值有明显差异;结果提示,介导贲门环肌收缩的5-HT受体亚型与胃底胃体不同。进一步确定大鼠贲门、胃底、胃体和幽门环肌中,介导CCh和5-HT收缩的受体亚型十分重要。

[1] Li W,Zheng TZ,Qu SY,Ding YH,Wei YL.Effect of Cangzhu on contractile activity of gastric muscle strips in rats[J].Pharmacol Clin Chin Mater Med (中药药理与临床),1999,15(6):29-30.

[2] Dai CB,Liu N,Qian W,Hou XH.Effect of nitric oxide on gastric antral smooth muscle contraction induced by Simo decoction in rats[J].Chin J Gastroenterol(胃肠病学),2012,17(2):115-118.

[3] Zhou L,Wang LJ,Yuan B,Wang L.Effect of motilin on gastric smooth contraction induced by interstitial cells of Cajal[J].Natl Med J China(中华医学杂志),2003,83(16):1422-1427.

[4] Mendel M,Chłopecka M,Dziekan N,Karlik W,Wiechetek M.Participation of extracellular calcium in α-hederin-induced contractions of rat isolated stomach strips[J].J Ethnopharmacol,2013,146 (1):423-426.

[5] Buharalioˇglu CK,Akar F.The reactivity of seroto-nin,acetylcholine and KCl-induced contractions to relaxant agents in the rat gastric fundus[J].Pharmacol Res,2002,45(4):325-331.

[6] Correa RM,Lafayette SS,Pereira GJ,Hirata H,Garcez-do-Carmo L,Smaili SS.Mitochondrial involvement in carbachol-induced intracellular Ca2+mobilization and contraction in rat gastric smooth muscle[J].Life Sci,2011,89(21-22):757-764.

[7] Giaroni C,Knight GE,Ruan HZ,Glass R,Bardini M,Lecchini S,et al.P2 receptors in the murine gastrointestinaltract[J].Neuropharmacology,2002,43(8):1313-1323.

[8] Qin J, Liu K, Wang PS, Liu C.V1Receptor in ENS mediates the excitatory effect of vasopressin on circular muscle strips of gastric body in vitro in rats[J].Regul Pept,2009,157(1-3):32-36.

[9] Korolkiewicz R,Takeuchi K,Sliwinski W,Konstanski Z,Rekowski P,Szyk A.Contractile effects of porcine galanin(1-29)-NH2on the rat isolated gastric fundus:mediation by potassium ions[J].Pharmacol Res,1997,36(2):147-151.

[10] Amemiya N,Hatta S,Ohshika H.Effects of ondansetron on electrically evoked contraction in rat stomach fundus:possible involvement of 5-HT2Breceptors[J].Eur J Pharmacol,1997,339(2-3): 173-181.

[11] Blanc FX,Salmeron S,Coirault C,Bard M,Fadel E,Dulmet E,et al.Effects of load and tone on the mechanics of isolated human bronchial smooth muscle [J].J Appl Physiol,1999,86(2):488-495.

[12] De Mey JG,Brutsaert DL.Mechanical properties of resting and active isolated coronary arteries[J]. Circ Res,1984,55(1):1-9.

[13] Ren LM,Zhang M,Yuan ZF,Zhu ZN,Shi CX.Influence of stretch on α1receptor agonist phenylephrine regulated vasoconstriction in rabbit regional arteries[J].Chin J Pharmacol Toxicol(中国药理学与毒理学杂志),2002,16(4):255-260.

[14] Gershon MD,Tack J.The serotonin signaling system:from basic understanding to drug development for functional GI disorders[J].Gastroenterology,2007,132(1):397-414.

[15] Sanger GJ.5-Hydroxytryptamine and the gastrointestinal tract:where next?[J].Trends Pharmacol Sci,2008,29(9):465-471.

[16] Zhou L.Function of gastric motility[M]∥Zhou L,Ke MY.Gastrointestinal Motility:Basic and Clinical (胃肠动力学:基础与临床).Beijing:Science Press,1999:509.

[17] Milenov K,Golenhofen K.Differentiated contractile responses of gastric smooth muscle to substance P[J].Pflugers Arch,1983,397(1):29-34.

[18] Li L,Wu T,Wei C,Han JK,Jia ZH,Wu YL,et al.Exhaustive swimming differentially inhibits P2X1 receptor-and α1-adrenoceptor-mediated vasoconstriction in isolated rat arteries[J].Acta Pharmacol Sin,2012,33(2):221-229.

[19] Wang B,Cheng FT.Muscarinic receptor subtypes and gastrointestinal smooth muscle function[J]. Chin J Pathophysiol(中国病理生理杂志),2001,17(11):1093-1096.

[20] Zheng SL, Wang SY, Wang YY.Physiological mechanism of acetylcholine on myocardial and smooth muscle[J].J Tangshan Teachers Coll(唐山师范学院学报),2009,31(2):75-76.

[21] Thomas EA, Ehlert FJ.Involvement of the M2muscarinic receptor in contractions of the guinea pig trachea,guinea pig esophagus,and rat fundus [J].Biochem Pharmacol,1996,51(6):779-788.

[22] Kitazawa T,Hashiba K,Cao J,Unno T,Komori S,Yamada M,et al.Functional roles of muscarinic M2and M3receptors in mouse stomach motility:studies with muscarinic receptor knockout mice[J].Eur J Pharmacol,2007,554(2-3):212-222.

[23] So I,Yang DK,Kim HJ,Min KW,Kang TM,Kim SJ,et al.Five subtypes of muscarinic receptors are expressed in gastric smooth muscles of guinea pig[J].Exp Mol Med,2003,35(1):46-52.

Effect of stretch on muscarinic receptor-and 5-hydroxytryptamine receptor-mediated contractile responses in isolated gastric smooth muscle of rats

WANG Dong-kai1∗,REN Xue-Jiao2∗,LU Dan-dan1,REN Lei-ming1
(1.College of Chinese Integrative Medicine,Hebei Medical University,Shijiazhuang 050017,China;2.the Fourth Hospital,Hebei Medical University,Shijiazhuang 050011,China)

OBJECTlVE To investigate the effect of stretch on muscarinic receptor-and 5-hydroxytryptamine(5-HT)receptor-mediated contractile responses in isolated circular muscle strips taken from the rat stomach.METHODS The contractile responses to carbachol(CCh)0.001-30 μmol·L-1or 5-HT 0.0001-30 μmol·L-1administered cumulatively were recorded in isolated circular muscle strips taken from the gastric fundus,body,cardia and pylorus of rats under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g,but a single concentration of CCh 0.3 μmol·L-1was administered to the antrum. RESULTS The-Log EC50value for CCh in the isolated circular muscle strips of the gastric fundus,body and pylorus under 1.0 g preload was the largest,but decreased significantly with higher preloads (P<0.05,P<0.01).A similar result was obtained in the isolated circular muscle strips of the gastric body when 5-HT was used as an agonist.The Emaxvalue of contractile responses to CCh and 5-HT in the circular muscle strips of the gastric cardia under 3.0 g preload was increased by 117.4%and 75.7%compared to that under 1.0 g preload.The Emaxvalue of contractile responses to 5-HT in the circular muscle strips of the gastric body under 3.0 g preload was also increased by 115.9%when compared to 1.0 g preload.The Emax(g)value of contractile responses to CCh in four types of muscle strips was 10.453±2.956(cardia under 3.0 g preload),13.878±2.618(fundus under 2.5 g preload),10.244±1.843 (gastric body under 2.5 g preload)and 2.585±1.098(pylorus under 2.5 g preload),respectively.The Emax(g)value of contractile responses to 5-HT in three types of muscle strips was 4.363±1.705(cardia under 3.0 g preload),3.931±0.615(fundus under 3.0 g preload)and 3.161±0.680(gastric body under 3.0 g preload),respectively.CONCLUSlON 0.5 g or 1.0 g preload is inadequate for accurate determination of contractile responses mediated by muscarinic receptors and 5-HT receptors in isolated circular muscle strips taken from the rat gastric cardia,fundus,body and pylorus,but 2.0 g preload is optimal for investigating muscarine receptor-or 5-HT receptor-mediated contractile responses of isolated gastric strips of rats.

receptors,muscarine;receptors,5-hydroxytryptamine;stretch;gastric body;fundus;cardia;pylorus

REN Lei-ming,E-mail:ren-leiming@263.net,Tel:(0311)86266722

R975

A

1000-3002(2014)04-0519-06

10.3867/j.issn.1000-3002.2014.04.008

Foundation item:The project supported by National Program on Key Basic Research Project of China(973 Program)(2012CB518601);and National Science&Technology Major Project of China(2011ZX 09102-011-04)

2014-01-09 接受日期:2014-07-14)

(本文编辑:乔 虹)

国家重点基础研究发展计划(973计划) (2012 CB518601);国家科技重大专项(2011ZX09102-011-04)

王东凯(1984-),男,硕士研究生;任雪姣(1985-),女,硕士,主要从事肿瘤放射治疗学研究。

任雷鸣,Tel:(0311)86266722,E-mail: ren-leiming@263.net

∗共同第一作者。

猜你喜欢

胃体贲门胃窦
胃蛋白酶原在慢性萎缩性胃炎筛查中的价值
超声引导下针刺足三里穴对胃窦收缩功能的影响:随机对照研究
经腹胃充盈超声造影诊断功能性消化不良患者胃动力障碍的价值探讨
超声胃功能检测诊断糖尿病胃轻瘫的临床研究
慢性萎缩性胃炎胃镜像与藏医四诊表现的相关性研究❋
超声诊断中晚期胃窦癌的价值与影像学研究
内镜黏膜下剥离术治疗胃窦黏膜脱垂10 例临床效果报道
腹腔镜下贲门肌层切开术及Dor胃底折叠术治疗贲门失弛缓症临床分析
贲门失弛缓症的微创治疗进展
食管、贲门类癌的诊断治疗及预后分析