牵拉对毒蕈碱受体和5-羟色胺受体介导大鼠离体胃平滑肌收缩功能的影响
2014-03-22王东凯任雪姣卢丹丹任雷鸣
王东凯,任雪姣,卢丹丹,任雷鸣
(1.河北医科大学中西医结合学院,河北石家庄 050017;2.河北医科大学第四医院,河北石家庄 050011)
牵拉对毒蕈碱受体和5-羟色胺受体介导大鼠离体胃平滑肌收缩功能的影响
王东凯1∗,任雪姣2∗,卢丹丹1,任雷鸣1
(1.河北医科大学中西医结合学院,河北石家庄 050017;2.河北医科大学第四医院,河北石家庄 050011)
目的 研究牵拉对毒蕈碱(M)受体及5-羟色胺(5-HT)受体介导大鼠离体胃平滑肌收缩功能的影响。方法 大鼠离体胃底、胃体、胃窦、贲门和幽门环行肌标本分别给予1.0,1.5,2.0,2.5和3.0 g的前负荷,除胃窦环肌给予单浓度卡巴胆碱(CCh)(0.3 μmol·L-1)外,其余标本采用累积给药法给予CCh 0.001~30 μmol·L-1,5-HT 0.0001~30 μmol·L-1,记录收缩反应。结果 大鼠胃底、胃体和幽门环肌在1.0 g前负荷下,CCh诱发收缩反应的-Log EC50值最大,-Log EC50值随前负荷升高而显著减小(P<0.05,P<0.01);5-HT诱发胃底环行肌收缩反应结果类似。与1.0 g前负荷相比,3.0 g前负荷时CCh和5-HT诱发贲门环肌收缩反应的 Emax值分别增大117.4%和75.7%;5-HT诱发胃体环肌收缩反应的 Emax值亦增大115.9%。CCh诱发各环行肌收缩的Emax值(g)分别为:贲门10.453±2.956(3.0 g前负荷)、胃底13.878± 2.618(2.5 g前负荷)、胃体10.244±1.843(2.5 g前负荷)、幽门2.585±1.098(2.5 g前负荷)。5-HT诱发各环肌收缩的Emax值(g)分别为:贲门4.363±1.705(3.0 g前负荷)、胃底3.931±0.615(3.0 g前负荷)、胃体3.161±0.680(3.0 g前负荷)。结论 0.5 g或1.0 g前负荷不适于研究M受体和5-HT受体介导的大鼠离体贲门、胃底、胃体和幽门环肌的收缩反应,2.0 g前负荷可能是研究M受体和5-HT受体介导大鼠离体胃环肌收缩反应的理想条件。
受体,毒蕈碱;受体,5-羟色胺;牵拉;胃体;胃底;贲门;幽门
胃平滑肌条是医学研究中的常用实验标本,受体激动剂诱发收缩反应的半数有效量(EC50)和最大反应(Emax)是2个关键参数。国内文献报道,大鼠离体胃平滑肌条常施予1.0 g前负荷[1-3];国外文献中,前负荷差异较大,0.5 g[4],1.0 g[5-8]和2.0 g[9-10]均有报道,但未注明前负荷选择的理由。国外曾有报道,不同前负荷能影响人支气管平滑肌[11]和犬冠状动脉平滑肌[12]标本的收缩效能;Ren等[13]报道,在兔离体血管环肌标本,不同程度牵拉对α1受体介导收缩的EC50值有显著影响,推测不同前负荷对不同受体介导平滑肌收缩的影响不同。
哺乳动物大约95%的5-羟色胺(5-hydroxy-tryptamine,5-HT)存在于胃肠道[14];5-HT1A和5-HT1D受体激动剂可调节胃动力。舒马曲坦激活5-HT1B/1D受体,对功能性消化不良患者可松弛胃底(延迟胃排空),改善胃的顺应性,减轻胃胀和早饱感[15]。乙酰胆碱(acetylcholine,ACh)是副交感神经的递质,能激动各类胆碱受体,兴奋胃肠平滑肌。
本研究以卡巴胆碱(carbachol,CCh)和5-HT作为胃平滑肌收缩剂,分析不同牵拉程度对M受体和5-HT受体介导收缩的影响,各激动剂产生收缩时药物EC50值和Emax值的变化规律。
1 材料与方法
1.1 药品、实验动物和仪器
CCh购自德国ABCR GmbH&Co KG公司,5-HT购自日本Kasei Kogyo Co Ltd公司。K-H液成分(mmol·L-1):NaCl 133、KCl 4.7、MgSO40.61、NaH2PO41.35、CaCl22.52、NaHCO316.3、葡萄糖7.8,pH 7.2,均购自美国Sigma公司。30只健康雄性Wistar大鼠,体质量 250~300 g,许可证号SCXK(冀)2013-1-003,由河北省实验动物中心提供。PowerLab 8/35型数据采集系统(包括Octal Bridge Amp、张力换能器)由澳大利亚AD Instruments Pty Ltd生产;CP213型电子天平是美国Ohaus Corporation公司产品。
1.2 离体胃平滑肌标本的制备
大鼠禁食不禁水12 h,乌拉坦1.5 g·kg-1皮下注射麻醉后颈动脉放血处死,取全胃。沿胃大弯剪开,以95%O2+5%CO2、4℃改良K-H液中漂洗干净,沿环肌方向切取腹侧胃底、胃体、胃窦、贲门和幽门环肌5个部位[16-17]。每只大鼠取胃底环肌2条、胃体环肌2条以及胃窦、贲门和幽门环肌各1条,分别长约2 mm×8 mm,去除黏膜。标本一端固定于支架上,另一端接张力换能器,置于(37±0.5)℃的K-H液浴槽中。
胃底、胃体、胃窦、贲门和幽门环肌分别给予1.0,1.5,2.0,2.5和3.0 g的前负荷。在各自前负荷下平衡1 h(每15 min换1次K-H液)后开始实验。胃底、胃体、贲门和幽门环肌采用累积给药法给予CCh(0.001~30 μmol·L-1);5种标本均累积给予 5-HT(0.0001~30 μmol·L-1)。预实验显示,<0.3 μmol·L-1时,胃窦环肌的节律性收缩与强直性收缩区分不明显,难以分析数据;>0.3 μmol·L-1时,收缩的节律紊乱。故胃窦环肌采用单浓度(0.3 μmol·L-1)给药法[18]。每个标本依次在5个前负荷下完成一种药物的5次量效曲线,张力换能器记录收缩反应(g)。
1.3 统计学分析
2 结果
2.1 牵拉对CCh诱发胃平滑肌收缩的影响
CCh 0.001~30 μmol·L-1可使大鼠离体贲门、胃底、胃体和幽门环肌产生浓度依赖性收缩反应。双因素方差分析显示,贲门、胃底和胃体环肌在1.5,2.0,2.5和3.0 g前负荷下,CCh诱发的收缩显著大于1.0 g的收缩(P<0.05,P<0.01;图1A~C)。但是幽门环肌在1.0,1.5,2.0,2.5和3.0 g前负荷下,CCh诱发的收缩无统计学差异(图1D)。图2结果显示,单浓度给予CCh 0.3 μmol·L-1时,胃窦环肌在1.0,1.5,2.0,2.5和3.0 g前负荷下,CCh诱发的胃窦环肌强直性收缩的振幅随前负荷增加而下降,但无统计学差异(图2A)。CCh诱发的胃窦节律性收缩振幅随前负荷的增加而增强,前负荷2.0 g时收缩振幅显著强于1.0 g(P<0.01,图2B);前负荷2.5 g和3.0 g时收缩振幅与2.0 g相似(图2B)。胃窦环肌收缩频率与前负荷(1.0 g~3.0 g)呈明显的负相关(图2C),由1.0 g时的5.5 min-1降至3.0 g时的1.4 min-1(P<0.01);胃窦环肌首先呈强直性收缩,继而为长时程节律性收缩(图2D)。
2.2 牵拉对5-HT诱发胃平滑肌收缩的影响
5-HT 0.0001~30 μmol·L-1可使大鼠离体贲门、胃底和胃体环肌产生浓度依赖性收缩。双因素方差分析显示,贲门、胃底和胃体环肌在2.0,2.5和3.0 g前负荷下,5-HT诱发的收缩显著大于1.0 g时收缩(P<0.05,P<0.01;图3A~C)。5-HT对胃窦和幽门环肌无明显作用(数据略,n=8)。
Fig.1 Contractile responses to carbachol(0.001-30 μmol·L-1)in isolated circular muscle strips of rat gastric cardia(A,n=9),fundus(B,n=20),gastric body(C,n=18)and pylorus(D,n=10)under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g..∗P<0.05,∗∗P<0.01 compared with preload 1.0 g.
Fig.2 Responses to carbachol 0.3 μmol·L-1in isolated circular muscle strips of rat gastric antrum.A:stiffnass amplitude;B:rhythmamplitude;C:rhythm frequency.,n=6.∗P<0.05,∗∗P<0.01 compared with preload 1.0 g.
Fig.3 Contractile responses to 5-hydroxytryptamine(5-HT,0.0001-30 μmol·L-1)in isolated circular muscle strips of the rat gastric cardia(A,n=12),fundus(B,n=7)and gastric body(C,n=7)under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g..∗P<0.05,∗∗P<0.01,compared with preload 1.0 g.
2.3 牵拉对CCh和5-HT诱发最大收缩和EC50的影响
单因素方差分析显示(表1),贲门、胃底和胃体环肌在1.0~3.0 g前负荷下,CCh诱发的最大收缩反应(Emax)随着牵拉强度增大而升高;幽门环肌则无显著改变。4种环肌的实测Emax值(CCh)分别为:贲门10.453±2.956(3.0 g)、胃底13.878±2.618 (2.5 g)、胃体10.244±1.843(2.5 g)和幽门2.585± 1.098(2.5 g)。贲门、胃底和胃体环肌对5-HT的反应类似于CCh,但是其Emax值明显小于CCh;3种标本的实测Emax值(5-HT)分别为:贲门4.363±1.705 (3.0 g)、胃底3.931±0.615(3.0 g)和胃体3.161± 0.680(3.0 g)。以2.5 g的Emax值作为对照进行统计学分析显示,2.0 g和3.0 g前负荷下CCh和5-HT的Emax值无显著差异。
单因素方差分析结果显示(表2),在 1.0~3.0 g前负荷下,CCh和5-HT诱发贲门收缩的EC50值无显著改变,5-HT诱发胃体环肌收缩的EC50值亦无显著改变。在1.0 g前负荷下,CCh和5-HT诱发胃底环肌收缩的-Log EC50(mol·L-1)值分别为6.610±0.237和7.133±0.239;CCh诱发胃体和幽门环肌收缩的-Log EC50(mol·L-1)值分别为6.544±0.148和6.689±0.466。前负荷增至1.5,2.0,2.5和3.0 g时,各自的-Log EC50(mol·L-1)值逐渐变小(P<0.05,P<0.01)。以 2.5 g的-Log EC50值作为对照进行统计学分析结果显示,2.0 g和3.0 g前负荷下CCh和5-HT的-Log EC50值无显著差异。
Tab.1 Emaxof carbachol and 5-HT in various circular muscle strips of rats
Tab.2 -Log EC50of carbachol and 5-HT in various circular muscle strips of rats
3 讨论
本研究显示,0.5 g或1.0 g前负荷不适于研究M受体和5-HT受体介导的大鼠离体贲门、胃底、胃体和幽门环肌收缩。本课题组曾报道,在兔离体血管环标本,不同程度的牵拉(前负荷变化)对α1受体介导收缩的EC50和Emax产生显著影响[13];本研究在大鼠离体胃组织中多个部位的环行肌条上,证实了不同牵拉程度对不同受体介导的平滑肌收缩的影响是不同的。
本研究发现,在1.0~3.0 g(含3.0 g)前负荷时CCh和5-HT诱发贲门环肌收缩、5-HT诱发胃体环肌收缩的EC50值均无改变。但是与1.0 g前负荷相比,3.0 g前负荷时CCh和5-HT诱发贲门肌收缩的Emax值分别增大117.4%和75.7%,5-HT诱发胃体肌收缩的Emax值亦增大115.9%。除胃窦外,与2.5和3.0 g时相比,其他4部位标本施以2.0 g前负荷时,其EC50值和Emax值均无统计学差异。但是,这4部位标本的前负荷低于2.0 g时,多数标本的Emax值显著降低。因此,推荐在2.0 g前负荷作用下,进行M受体和5-HT受体介导的大鼠离体胃平滑肌收缩的研究。鉴于这些标本在1.0 g和1.5 g前负荷下,药物诱发收缩反应的Emax值有较大变化并有统计学意义,因此,选择≤1.0 g的前负荷进行实验显然不合适。
M受体包含5种亚型,M1,M2和M3分布在胃肠道,M2和M3可介导大鼠胃平滑肌收缩,M3作用为主[19-20]。研究发现,大鼠胃底纵肌在1.0 g前负荷作用下,M2和 M3均可介导收缩,M3为主[21]。M2受体基因敲除小鼠的胃底和胃窦环肌在0.5 g前负荷下,CCh诱发收缩的EC50值明显大于野生型小鼠,而收缩的Emax值不变;对于M3受体基因敲除小鼠相同部位,CCh诱发收缩的Emax值降低约50%,EC50值则无明显改变;M2和M3受体基因同时敲除,CCh不再诱发收缩[22]。So等[23]报道,利用膜片钳技术和单细胞RT-PCR技术发现,豚鼠胃窦平滑肌表达M1~M5受体的mRNA,但能被乙酰胆碱激活的只有M2,M3和M4受体。本研究发现,大鼠离体贲门、胃底、胃体和幽门环肌在前负荷相同时(1.0 g,1.5 g或 2.0 g),CCh诱发收缩的-Log EC50值(即 pD2值)均十分接近,提示上述4个部位胃组织中介导CCh诱发收缩的M受体可能相似。然而,在5-HT诱发大鼠贲门、胃底和胃体环肌收缩中,前负荷为1.0 g时的-Log EC50值依次为6.056±0.438,7.133±0.239和6.840±0.316,贲门与胃底环肌的-Log EC50的比值为11.9。前负荷增加至1.5 g,2.0 g或2.5 g时,贲门与胃底或胃体环肌相比,5-HT的-Log EC50值有明显差异;结果提示,介导贲门环肌收缩的5-HT受体亚型与胃底胃体不同。进一步确定大鼠贲门、胃底、胃体和幽门环肌中,介导CCh和5-HT收缩的受体亚型十分重要。
[1] Li W,Zheng TZ,Qu SY,Ding YH,Wei YL.Effect of Cangzhu on contractile activity of gastric muscle strips in rats[J].Pharmacol Clin Chin Mater Med (中药药理与临床),1999,15(6):29-30.
[2] Dai CB,Liu N,Qian W,Hou XH.Effect of nitric oxide on gastric antral smooth muscle contraction induced by Simo decoction in rats[J].Chin J Gastroenterol(胃肠病学),2012,17(2):115-118.
[3] Zhou L,Wang LJ,Yuan B,Wang L.Effect of motilin on gastric smooth contraction induced by interstitial cells of Cajal[J].Natl Med J China(中华医学杂志),2003,83(16):1422-1427.
[4] Mendel M,Chłopecka M,Dziekan N,Karlik W,Wiechetek M.Participation of extracellular calcium in α-hederin-induced contractions of rat isolated stomach strips[J].J Ethnopharmacol,2013,146 (1):423-426.
[5] Buharalioˇglu CK,Akar F.The reactivity of seroto-nin,acetylcholine and KCl-induced contractions to relaxant agents in the rat gastric fundus[J].Pharmacol Res,2002,45(4):325-331.
[6] Correa RM,Lafayette SS,Pereira GJ,Hirata H,Garcez-do-Carmo L,Smaili SS.Mitochondrial involvement in carbachol-induced intracellular Ca2+mobilization and contraction in rat gastric smooth muscle[J].Life Sci,2011,89(21-22):757-764.
[7] Giaroni C,Knight GE,Ruan HZ,Glass R,Bardini M,Lecchini S,et al.P2 receptors in the murine gastrointestinaltract[J].Neuropharmacology,2002,43(8):1313-1323.
[8] Qin J, Liu K, Wang PS, Liu C.V1Receptor in ENS mediates the excitatory effect of vasopressin on circular muscle strips of gastric body in vitro in rats[J].Regul Pept,2009,157(1-3):32-36.
[9] Korolkiewicz R,Takeuchi K,Sliwinski W,Konstanski Z,Rekowski P,Szyk A.Contractile effects of porcine galanin(1-29)-NH2on the rat isolated gastric fundus:mediation by potassium ions[J].Pharmacol Res,1997,36(2):147-151.
[10] Amemiya N,Hatta S,Ohshika H.Effects of ondansetron on electrically evoked contraction in rat stomach fundus:possible involvement of 5-HT2Breceptors[J].Eur J Pharmacol,1997,339(2-3): 173-181.
[11] Blanc FX,Salmeron S,Coirault C,Bard M,Fadel E,Dulmet E,et al.Effects of load and tone on the mechanics of isolated human bronchial smooth muscle [J].J Appl Physiol,1999,86(2):488-495.
[12] De Mey JG,Brutsaert DL.Mechanical properties of resting and active isolated coronary arteries[J]. Circ Res,1984,55(1):1-9.
[13] Ren LM,Zhang M,Yuan ZF,Zhu ZN,Shi CX.Influence of stretch on α1receptor agonist phenylephrine regulated vasoconstriction in rabbit regional arteries[J].Chin J Pharmacol Toxicol(中国药理学与毒理学杂志),2002,16(4):255-260.
[14] Gershon MD,Tack J.The serotonin signaling system:from basic understanding to drug development for functional GI disorders[J].Gastroenterology,2007,132(1):397-414.
[15] Sanger GJ.5-Hydroxytryptamine and the gastrointestinal tract:where next?[J].Trends Pharmacol Sci,2008,29(9):465-471.
[16] Zhou L.Function of gastric motility[M]∥Zhou L,Ke MY.Gastrointestinal Motility:Basic and Clinical (胃肠动力学:基础与临床).Beijing:Science Press,1999:509.
[17] Milenov K,Golenhofen K.Differentiated contractile responses of gastric smooth muscle to substance P[J].Pflugers Arch,1983,397(1):29-34.
[18] Li L,Wu T,Wei C,Han JK,Jia ZH,Wu YL,et al.Exhaustive swimming differentially inhibits P2X1 receptor-and α1-adrenoceptor-mediated vasoconstriction in isolated rat arteries[J].Acta Pharmacol Sin,2012,33(2):221-229.
[19] Wang B,Cheng FT.Muscarinic receptor subtypes and gastrointestinal smooth muscle function[J]. Chin J Pathophysiol(中国病理生理杂志),2001,17(11):1093-1096.
[20] Zheng SL, Wang SY, Wang YY.Physiological mechanism of acetylcholine on myocardial and smooth muscle[J].J Tangshan Teachers Coll(唐山师范学院学报),2009,31(2):75-76.
[21] Thomas EA, Ehlert FJ.Involvement of the M2muscarinic receptor in contractions of the guinea pig trachea,guinea pig esophagus,and rat fundus [J].Biochem Pharmacol,1996,51(6):779-788.
[22] Kitazawa T,Hashiba K,Cao J,Unno T,Komori S,Yamada M,et al.Functional roles of muscarinic M2and M3receptors in mouse stomach motility:studies with muscarinic receptor knockout mice[J].Eur J Pharmacol,2007,554(2-3):212-222.
[23] So I,Yang DK,Kim HJ,Min KW,Kang TM,Kim SJ,et al.Five subtypes of muscarinic receptors are expressed in gastric smooth muscles of guinea pig[J].Exp Mol Med,2003,35(1):46-52.
Effect of stretch on muscarinic receptor-and 5-hydroxytryptamine receptor-mediated contractile responses in isolated gastric smooth muscle of rats
WANG Dong-kai1∗,REN Xue-Jiao2∗,LU Dan-dan1,REN Lei-ming1
(1.College of Chinese Integrative Medicine,Hebei Medical University,Shijiazhuang 050017,China;2.the Fourth Hospital,Hebei Medical University,Shijiazhuang 050011,China)
OBJECTlVE To investigate the effect of stretch on muscarinic receptor-and 5-hydroxytryptamine(5-HT)receptor-mediated contractile responses in isolated circular muscle strips taken from the rat stomach.METHODS The contractile responses to carbachol(CCh)0.001-30 μmol·L-1or 5-HT 0.0001-30 μmol·L-1administered cumulatively were recorded in isolated circular muscle strips taken from the gastric fundus,body,cardia and pylorus of rats under different preloads of 1.0,1.5,2.0,2.5 and 3.0 g,but a single concentration of CCh 0.3 μmol·L-1was administered to the antrum. RESULTS The-Log EC50value for CCh in the isolated circular muscle strips of the gastric fundus,body and pylorus under 1.0 g preload was the largest,but decreased significantly with higher preloads (P<0.05,P<0.01).A similar result was obtained in the isolated circular muscle strips of the gastric body when 5-HT was used as an agonist.The Emaxvalue of contractile responses to CCh and 5-HT in the circular muscle strips of the gastric cardia under 3.0 g preload was increased by 117.4%and 75.7%compared to that under 1.0 g preload.The Emaxvalue of contractile responses to 5-HT in the circular muscle strips of the gastric body under 3.0 g preload was also increased by 115.9%when compared to 1.0 g preload.The Emax(g)value of contractile responses to CCh in four types of muscle strips was 10.453±2.956(cardia under 3.0 g preload),13.878±2.618(fundus under 2.5 g preload),10.244±1.843 (gastric body under 2.5 g preload)and 2.585±1.098(pylorus under 2.5 g preload),respectively.The Emax(g)value of contractile responses to 5-HT in three types of muscle strips was 4.363±1.705(cardia under 3.0 g preload),3.931±0.615(fundus under 3.0 g preload)and 3.161±0.680(gastric body under 3.0 g preload),respectively.CONCLUSlON 0.5 g or 1.0 g preload is inadequate for accurate determination of contractile responses mediated by muscarinic receptors and 5-HT receptors in isolated circular muscle strips taken from the rat gastric cardia,fundus,body and pylorus,but 2.0 g preload is optimal for investigating muscarine receptor-or 5-HT receptor-mediated contractile responses of isolated gastric strips of rats.
receptors,muscarine;receptors,5-hydroxytryptamine;stretch;gastric body;fundus;cardia;pylorus
REN Lei-ming,E-mail:ren-leiming@263.net,Tel:(0311)86266722
R975
A
1000-3002(2014)04-0519-06
10.3867/j.issn.1000-3002.2014.04.008
Foundation item:The project supported by National Program on Key Basic Research Project of China(973 Program)(2012CB518601);and National Science&Technology Major Project of China(2011ZX 09102-011-04)
2014-01-09 接受日期:2014-07-14)
(本文编辑:乔 虹)
国家重点基础研究发展计划(973计划) (2012 CB518601);国家科技重大专项(2011ZX09102-011-04)
王东凯(1984-),男,硕士研究生;任雪姣(1985-),女,硕士,主要从事肿瘤放射治疗学研究。
任雷鸣,Tel:(0311)86266722,E-mail: ren-leiming@263.net
∗共同第一作者。