APP下载

肺腺癌EGFR-TKI失败后的治疗策略

2014-03-20顾阳春曹宝山马力文

癌症进展 2014年1期
关键词:获得性吉非腺癌

顾阳春 曹宝山 马力文

北京大学第三医院肿瘤化疗与放射病科,北京 100191

肺腺癌EGFR-TKI失败后的治疗策略

顾阳春 曹宝山 马力文#

北京大学第三医院肿瘤化疗与放射病科,北京 100191

肺腺癌的治疗因表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor,EGFR-TKI)的出现而率先步入靶向治疗时代,而一代可逆性EGFR-TKI的耐药成为不可避免的挑战。对EGFR信号通路内部和外部异常的深入研究是应对EGFR-TKI耐药的根本,在此基础上开发了二代不可逆性EGFRTKI、多靶点TKI以及其他多种靶向药物。综合应用靶向药物、化疗和放疗等多种治疗方式,寻找最佳结合模式,对延长患者生存也有重要作用。

肺癌;靶向治疗;表皮生长因子受体;酪氨酸激酶抑制剂;耐药

肺腺癌是非小细胞肺癌(non-small-cell lung cancer,NSCLC)中最常见的病理类型之一。存在EGFR基因敏感性突变(包括常见的外显子19缺失突变和外显子21的L858R点突变以及部分敏感的外显子18的点突变G719A/C和外显子21的点突变L861Q点突变)的患者以及身体状况不能耐受化疗的肺癌优势人群(腺癌、不吸烟、东亚裔、女性)的患者采用EGFR-TKI作为一线治疗,因其高效低毒的优势被广泛接受。但不论是吉非替尼、厄洛替尼还是其他新型EGFR-TKI,最终均难免产生耐药。本文对EGFR-TKI耐药原因及治疗对策进行了总结,以供临床工作借鉴。

1 EGFR-TKI耐药的概念

EGFR-TKI耐药包括原发性和获得性两种。原发性耐药指应用EGFR-TKI后从未获得疗效。获得性耐药指①既往接受过EGFR-TKI单药(厄洛替尼或吉非替尼)治疗;②符合以下标准之一:已知有EGFR突变且对EGFR-TKI敏感;一线使用EGFRTKI后有临床获益,包括完全缓解(complete response,CR)、部分缓解(partial response,PR)或是疾病稳定(stable disease,SD)超过6个月;③厄洛替尼或吉非替尼治疗1个月后出现疾病进展(progressive disease,PD);④停用EGFR-TKI及开始新治疗之间未使用其他综合治疗手段[1]。

2 EGFR-TKI获得性耐药的原因

获得性耐药的原因是当前研究热点,主要方向有:EGFR其他突变类型的发现和定性,EGFR下游信号分子异常,其他受体的基因异常,信号传导通路间的交叉传导,以及细胞表型的转化等。

2.1 EGFR耐药突变

EGFR基因存在多种耐药突变,其中最常见的是20外显子T790M突变。T790M改变了EGFR空间结构,不利于TKI竞争性结合,从而产生原发性或获得性耐药[2]。在初治的NSCLC中T790M发生率约8.2%(腺癌中11.4%,鳞癌中4.8%,大细胞癌中8.3%);在存在EGFR敏感性突变而出现获得性耐药的病例中发生率约50%,采用更高敏感性的PCR方法检测其突变率可达68%[3-4]。出现获得性T790M突变的患者,停用EGFR-TKI(即除去外界选择因素)后,细胞生长对T790M的依赖也消退,再次获取标本可发现T790M消失[5]。T790M突变对可逆和不可逆的EGFR-TKI均耐药,而其他EGFR耐药突变如D761Y和T854A,主要对可逆性EGFR-TKI耐药[6-8]。

2.2 MET基因扩增及其他受体基因异常

MET基因扩增是另一常见的耐药突变,占EGFR-TKI获得性耐药原因的5%~20%[8]。MET是胰岛素受体酪氨酸激酶家族成员,其配体为肝细胞生长因子(hepatocyte growth factor,HGF),通过引起ERBB3-PI3K-Akt信号通路持续活化而诱发耐药[8]。未经治的肺癌患者中存在MET基因扩增现象,发生率约10.58%,鳞状细胞癌和吸烟患者中略高,与分期晚、生存期短和化疗耐药有关[9]。

除了EGFR,人类表皮生长因子受体(human epithelial growth factor receptor,HER)家族其他成员也可能在EGFR-TKI耐药中发挥作用。目前较明确的是HER-2基因扩增在TKI获得性耐药中占12%,与T790M突变互斥[10]。不可逆的二代EGFR-TKI的优势也体现在作为泛HER家族抑制剂方面。ALK是另一种酪氨酸激酶受体,能够结构性活化RAS-RAF-MEK-MAPK通路。编码该受体的基因可以和多种其他基因融合。EML4-ALK融合基因在NSCLC中的发生率为6%,通常发生在腺癌(约占96%)、EGFRmu(-)∕KRASmu(-)、EGFRTKI耐药的患者。具有该融合基因的肺癌对METALK抑制剂克唑替尼敏感[2]。

2.3 下游信号分子异常和信号通路间的交叉传导

EGFR活化后激活RAS-RAF-MEK-ERK-MAPK和PI3K-AKT-mTOR这两条信号通路,促进细胞增殖和存活。PI3K和MAPK是多种生长因子受体信号传导的必经之路,例如胰岛素样生长因子1受体(insulin-like growth factor-1 receptor,IGF-1R)、血管内皮生长因子受体(vascular endothelial growth factor receptor,VEGFR)和血小板源性生长因子受体(platelet derived growth factor receptor,PDGFR)等,体现了多条信号通路间的Crosstalk,使得癌细胞的生长信号可以绕过被阻断处继续下传,从而维持细胞生长[11-12]。因此多靶点TKI是克服耐药的研究方向之一。

信号通路下游效应分子肿瘤性活化也可导致EGFR-TKI耐药,关注较多的是KRAS和PI3K。KRAS活性突变主要发生于外显子2的12和13密码子,在NSCLC中发生率为15%~20%,肺腺癌中为30%(从不吸烟者中15%,曾经或者正在吸烟者中更常见),与EGFR突变几乎互斥,主要与EGFR-TKI原发耐药有关,而且密码子13突变的耐药性更强[2,13-16]。PI3K的主要催化亚单位PI3KCA的基因突变则是EGFR-TKI获得性耐药的原因之一,在NSCLC中发生率为2%~4.1%,常与其他突变如EGFR、KRAS和ALK等并存[14,17]。

2.4 细胞表型转化

肺癌细胞来源于上皮组织,治疗后可向间充质细胞转化——上皮间充质转化(epithelial-mesenchymal transition,EMT),即细胞失去上皮细胞的连接蛋白如E-钙黏蛋白,表达间充质细胞的特征(如波形蛋白和纤连蛋白)获得迁移能力,增加肿瘤转移的可能[15,18],处于间充质状态的肺癌细胞对EGFRTKI耐药[19]。这一过程可由多种原因引起:生长因子及其受体如TGFβ-1/TGFβR和c-MET等,细胞内某些信号分子例如slug,以及其他耐药突变如EGFR的T790M突变等[20-23]。EGFR-TKI治疗后的NSCLC细胞还可能出现表型转化,例如向小细胞癌转变,转化后的细胞保留原有突变且对小细胞肺癌的化疗方案敏感[8]。

2.5 其他

对EGFR-TKI获得性耐药原因的探索研究还包括:①ATP结合盒亚家族G成员2(ATP-binding cassette subfamily G member 2,ABCG2)异常,ABCG2是化疗常见耐药机制,在吉非替尼获得性耐药中发挥一定作用,可通过提高药物浓度或者采用其他EGFR-TKI来克服[21,24];②PTEN缺失,它通过引起AKT-survivin的持续活化而导致细胞对TKI耐药[25]。

3 克服耐药策略——靶向治疗

3.1 吉非替尼vs厄洛替尼

吉非替尼失败后采用厄洛替尼仍可以获得一定疗效:缓解率(response rate,RR)9%,疾病控制率(disease control rate,DCR)44%,中位无进展生存期(median progression-free survival,mPFS)2个月,中位生存期(median overall survival,mOS) 11.8个月[26]。其中PS 0/1分、EGFR敏感突变、曾从吉非替尼治疗中获益和吉非替尼失败后先化疗后应用厄洛替尼的患者可获更好疗效:RR 25%,DCR 72%,mPFS 3.4个月[26]。

3.2 不可逆的二代EGFR-TKI

不可逆的二代EGFR-TKI药物主要有阿法替尼(Afatinib,BIBW 2992)和Dacomitinib,是泛HER家族抑制剂,具有亲和性更高、抑制更持久的优势,还能有效抑制T790M耐药突变细胞[8]。阿法替尼可以抑制EGFR和HER2,对有EGFR敏感突变但对可逆的一代EGFR-TKI耐药的肺癌有效。在LUX系列研究中,阿法替尼与安慰剂相比显著延长化疗和厄洛替尼/吉非替尼失败后的ⅢB/Ⅳ期肺腺癌患者的PFS(3.3个月vs 1.1个月),但没有OS获益(10.8个月vs 12个月)(LUX-Lung1)[27]。阿法替尼推荐剂量为50 mg,qd,这一剂量在亚洲人群也得到了验证(LUX-Lung4),剂量限制性毒性为可恢复的黏膜炎,其他常见不良反应有口炎、腹泻、恶心、皮疹、皮肤干燥和甲沟炎[8]。Dacomitinib(PF299804)可以抑制EGFR、HER2和HER4,在吉非替尼耐药的细胞模型和有T790M突变或HER2扩增的动物模型中有活性,但对KRAS突变的癌细胞作用有限[8]。Dacomitinib用于化疗和厄洛替尼失败后的KRASmu-NSCLC的挽救治疗取得一定疗效:部分缓解(partial response,PR)3例(共62例),疾病稳定(stable disease,SD)35例(共62例)[28]。推荐剂量为45 mg,qd,常见不良反应为腹泻和皮疹[8]。Dacomatinib作为进展期NSCLC的三线及二线治疗均有Ⅲ期临床研究(JBR-26和ARCHER1009)正在进行。

3.3 多靶点TKI

克服靶向药物耐药的思路包括横向或纵向联合应用针对信号传导网络上不同节点的药物,其中多靶点TKI能够同时抑制多个受体信号传导,属于横向联合,能够更广泛地阻止生长信号传递。例如在肾细胞癌中广泛应用的舒尼替尼(Sunitinib)和索拉非尼(Sorafenib),VEGFR、PDGFR、c-KIT和FLT-3抑制剂,在EGFR-TKI耐药的肺癌动物模型中有一定抑癌作用,但在临床应用中即使与厄洛替尼联合其结果也令人失望[29-30]。凡德他尼(Vandetanib,ZD6474)是EGFR、VEGFR和RET(rearranged during transfection)抑制剂,作为进展期NSCLC的二线治疗时OS未获延长(ZEAL和ZODIAC),作为二线及以上治疗时RR、PFS和OS均与厄洛替尼相当(ZEST),对EGFR-TKI失败者其疗效与安慰剂无异(ZEPHYR)[15]。达沙替尼(Dasatinib)能抑制SRC和EGFR通路,对吉非替尼耐药的EGFRmu(+)肺癌细胞模型和动物模型中有效,但Ⅱ期临床研究的疗效却不令人满意[31]。还有一些针对KRASmu(+)或T790M突变的新药正进行Ⅱ期临床研究并取得一定疗效,例如BMS-690514(EGFR、HER2和VEGFR抑制剂)和XL647(EGFR2、HER2和VEGFR2抑制剂)[15]。

3.4 其他靶向药物

EGFR抗体和EGFR-TKI作用点不同,理论上两者联合应用可能克服EGFR-TKI耐药,但是在T790M突变的动物模型和Ⅰ/Ⅱ期临床研究中,只观察到阿法替尼联合西妥昔单抗获得了疗效,而吉非替尼或厄洛替尼联合西妥昔单抗却没有[8,32]。MET抑制剂中的非ATP竞争性抑制剂Tifantinib (ARQ197),当与厄洛替尼联合时能改善EGFRmu (-)/KRASmu(+)的非鳞癌患者的PFS[30,33]。热休克蛋白90(heat shock protein 90,HSP90)是辅助蛋白质折叠和稳定的分子伴侣,受其辅助的蛋白质包括EGFR、HER2、MET、Raf1、Akt和cdk等。HSP90抑制剂对EGFR-TKI获得耐药的NSCLC有效,不论是否存在T790M突变;对有ALK重排的NSCLC细胞作用更明显[34-35]。蛋白酶体抑制剂硼替佐米(Bortezomib)在细胞和动物模型中,能够显著抑制EGFR-TKI耐药肺癌的生长并增加凋亡[36]。PI3K抑制剂PI103与吉非替尼联用,可以克服吉非替尼获得性耐药[37]。IGF-1R抗体Figitumumab和Dalotuzumab分别与厄洛替尼联用,却不能带来临床获益[30]。

4 耐药对策——化疗和放疗

4.1 EGFR-TKI和化疗

肺腺癌具有极大异质性,80%~90%的手术标本中混合存在2种及以上的常见病理类型(腺泡型、乳头型、支气管肺泡型和实体型)[38]。多数患者确诊时已无手术机会,而活检标本体积小,难以全面反映病灶内部结构和所有生物学特征,而且各个病灶间的生物学特征也可能不一致,例如EGFR和KRAS等基因突变情况[39]。这是单一治疗疗效受限的原因之一,也是EGFR-TKI治疗失败的原因之一。

有人提出EGFR-TKI耐药后仍继续应用以持续抑制依赖EGFR突变的细胞克隆,同时加用化疗杀伤非依赖EGFR突变的细胞克隆。而且,EGFR-TKI通过阻断肿瘤细胞逃逸化疗杀伤所依赖的信号通路,可增加化疗敏感性[12]。动物模型中,厄洛替尼耐药后继续应用并联合化疗,比单用化疗疗效更好[40]。回顾性研究中,吉非替尼失败后的NSCLC患者采用吉非替尼联合紫杉醇:RR 13%、DCR 75%,mPFS 4.3个月,mOS 8.1个月[8]。尚未结束的LUX-Lung5研究也体现了这一思路:阿法替尼失败后进行阿法替尼联合紫杉醇对比最佳化疗方案的疗效。然而不可逆性EGFR-TKI的耐药可能出现“药物成瘾”现象,即撤除药物后耐药细胞的活力反而降低[41]。

对进展期NSCLC,虽然EGFR-TKI耐药后采用EGFR-TKI联合化疗可能优于单用化疗,但是同时应用EGFR-TKI和化疗作为一线治疗早在TRIBUTE、INTACT1、INTACT2和TALENT这四个Ⅲ期临床研究中被否定[42-45]。但近期Ⅲ期临床研究FASTACTⅡ却观察到GP方案化疗联合厄洛替尼较单用GP方案化疗可明显延长PFS(10.0个月vs 7.4个月(P<0.0001)[46]。较以往临床研究不同的是,FASTACTⅡ中GP方案和厄洛替尼为交替使用,即以28天为周期的GP方案中第15~28给予厄洛替尼或安慰剂,4个周期的诱导治疗后进行厄洛替尼或安慰剂维持治疗,而且在入组患者中腺癌比例高达76%,然而同样采用GP方案和厄洛替尼进行研究的TALENT则没有进行维持治疗,而且腺癌的比例较低[45-46]。因此,尚不能从FASTACTⅡ研究中得出联合应用化疗和EGFR-TKI具有优势的结论。

尽管如此,许多基础研究也支持交替应用EGFR-TKI和化疗可能延长肿瘤进展的时间。采用EGFR-TKI敏感和耐药肺癌细胞克隆混合体作为模型,观察到交替给予紫杉醇和厄洛替尼对癌细胞的抑制较单用紫杉醇更久[47]。已有Ⅰ期和Ⅱ期临床研究观察到间断应用EGFR-TKI和化疗比同时应用二者更好[48-49]。但是,EGFR-TKI和化疗的先后顺序与交替时间仍有待确定。多个EGFR敏感突变的细胞系中,不论对EGFR-TKI是否耐药,先用紫杉醇后用吉非替尼可以获得抗增殖的协同作用:紫杉醇治疗后出现剂量依赖性的EGFR磷酸化增加,此时吉非替尼能更显著地抑制EGFR磷酸化,若调换顺序则无此效果[50]。类似原理的协同作用还见于多西他赛序贯舒尼替尼和培美曲塞序贯索拉菲尼[51-52]。

4.2 EGFR-TKI联合放疗

EGFR-TKI治疗失败若是仅仅由于局部病灶进展,则可考虑加用局部放疗。回顾性研究中,因出现脑转移而判定病情进展的患者,继续应用原来的EGFR-TKI加上脑放疗,颅内病灶DCR 71%,而颅外病灶继续获得mPFS 171天[53]。对EGFR-TKI治疗已获疗效的非鳞癌患者早联合多靶区放疗,不仅提高有效率,而且减少EGFR-TKI耐药出现[54]。

4.3 EGFR-TKI进展后的治疗模式

回顾性研究根据临床症状和影像学将EGFRTKI失败模式分为快速进展、缓慢进展和局部进展三类,三类患者间mPFS和mOS具有显著差异:缓慢进展组>局部进展组>快速进展组[55]。还有些患者(约23%)在耐药并停用EGFR-TKI后出现疾病快速进展,常见于EGFR-TKI治疗的TTP短、有胸腔积液和脑转移者[57]。快速进展的患者可能失去进一步治疗的机会,而缓慢进展和局部进展的患者仍可以综合选择化疗、放疗和其他EGFR-TKI治疗[55]。

5 总结和展望

肺腺癌的治疗首先步入靶向治疗时代,靶向药物耐药不可避免。一代可逆性EGFR-TKI获得耐药的主要原因有:EGFR本身或下游信号分子的基因出现耐药突变,其他生长因子受体基因扩增,以及可能引起细胞表型转化的多种基因异常等。针对某些耐药分子特征,已有有效治疗药物。临床工作中,在疾病进展时鼓励重新获取标本检测分子特征,从而确保治疗的靶向性。并且,根据疾病发展规律和治疗经验,及其与各种分子特征之间的关系,以及各种治疗手段特征,临床实践中将靶向药物与放化疗等手段有机地结合是提高肺癌患者生活质量、延长生存期的有效模式。

[1]Jackman D,Pao W,Riely GJ,et al.Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer[J].J Clin Oncol,2010,28(2)∶357-360.

[2]Cheng L,Zhang S,Alexander R,et al.The landscape of EGFR pathways and personalized management of non-smallcell lung cancer[J].Future Oncol,2011,7(4)∶519-541.

[3]Oh JE,An CH,Yoo NJ,et al.Detection of low-level EGFR T790M mutation in lung cancer tissues[J].APMIS,2011,119(7)∶403-411.

[4]Arcila ME,Oxnard GR,Nafa K,et al.Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay[J].Clin Cancer Res,2011,17(5)∶1169-1180.

[5]Sequist LV,Waltman BA,Dias-Santagata D,et al.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J].Sci Transl Med,2011,3(75)∶75ra26.

[6]Kancha RK,Peschel C,Duyster J.The epidermal growth factor receptor-L861Q mutation increases kinase activity without leading to enhanced sensitivity toward epidermal growth factor receptor kinase inhibitors[J].J Thorac Oncol,2011,6(2)∶387-392.

[7]Yasuda H,Kobayashi S,Costa DB.EGFR exon 20 insertion mutations in non-small-cell lung cancer:preclinical data and clinical implications[J].Lancet Oncol,2011,13(1)∶e23-e31.

[8]Ou SH.Second-generation irreversible epidermal growth factor receptor(EGFR)tyrosine kinase inhibitors(TKIs): A better mousetrap?A review of the clinical evidence[J].Crit Rev Oncol Hematol,2012,83(3)∶407-421.

[9]ChenYT,ChangJW,LiuHP,etal.Clinical implications of high MET gene dosage in non-small cell lung cancer patients without previous tyrosine kinase inhibitor treatment[J].J Thorac Oncol,2011,6(12)∶2027-2035.

[10]Takezawa K,Pirazzoli V,Arcila ME,et al.HER2 amplification:a potential mechanism of acquired resistance to EGFR inhibition in EGFR mutant lung cancers that lack the second-siteEGFRT790Mmutation[J].Cancer Discovery,2012,2(10)∶922-933.

[11]Hurbin A,Wislez M,Busser B,et al.Insulin-like growth factor-1 receptor inhibition overcomes gefitinib resistance in mucinous lung adenocarcinoma[J].J Pathol,2011,225(1)∶83-95.

[12]Custodio A,Méndez M,Provencio M.Targeted therapies for advanced non-small-cell lung cancer:current status and future implications[J].Cancer Treat Rev,2012,38(1)∶36-53.

[13]Vakiani E,Solit DB.KRAS and BRAF:drug targets and predictive biomarkers[J].J Pathol,2011,223(2)∶219-229.

[14]Ludovini V,Bianconi F,Pistola L,et al.Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer[J].J Thorac Oncol,2011,6(4)∶707-715.

[15]Giaccone G,Wang Y.Strategies for overcoming resistance to EGFR family tyrosine kinase inhibitors[J].Cancer Treat Rev,2011,37(6)∶456-464.

[16]Metro G,Duranti S,Chiari R,et al.KRAS mutational status and sensitivity to a reversible epidermal growth factor receptor-tyrosine kinase inhibitor(EGFR-TKI)in EGFR wild type(WT)advanced non-small cell lung cancer (NSCLC)patients(pts)[J].J Clin Oncol,2012,30 (Suppl)∶e18023.

[17]Chaft JE,Arcila ME,Paik PK,et al.Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling[J].Mol Cancer Ther,2012,11(2)∶485-491.

[18]UramotoH,ShimokawaH,HanagiriT,etal.Expression of selected gene for acquired drug resistance to EGFR-TKI in lung adenocarcinoma[J].Lung Cancer,2011,73(3)∶361-365.

[19]Suda K,Tomizawa K,Fujii M,et al.Epithelial to mesenchymal transition in an epidermal growth factor receptormutant lung cancer cell line with acquired resistance to erlotinib[J].J Thorac Oncol,2011,6(7)∶1152-1161.

[20]Chang TH,Tsai MF,Su KY,et al.Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor[J].Am J Respir Crit Care Med,2011,183 (8)∶1071-1079.

[21]Chen YJ,Huang WC,Wei YL,et al.Elevated BCRP/ ABCG2 expression confers acquired resistance to gefitinib in wild-type EGFR-expressing cells[J].PLoS One,2011,6(6)∶e21428.

[22]Bryant JL,Britson J,Balko JM,et al.A microRNA gene expression signature predicts response to erlotinib in epithelial cancer cell lines and targets EMT[J].Br J Cancer,2012,106(1)∶148-156.

[23]Lee MS,Kim HP,Kim TY,et al.Gefitinib resistance of cancer cells correlated with TM4SF5-mediated epithelialmesenchymal transition[J].Biochim BiophysActa,2012,1823(2)∶514-523.

[24]Hegedüs C,Truta-Feles K,Antalffy G,et al.Interaction of the EGFR inhibitors gefitinib,vandetanib,pelitinib and neratinib with the ABCG2 multidrug transporter:implications for the emergence and reversal of cancer drug resistance[J].BiochemPharmacol,2012,84(3)∶260-267.

[25]Okamoto K,Okamoto I,Hatashita E,et al.Overcoming erlotinib resistance in EGFR mutation-positive non-small cell lung cancer cells by targeting survivin[J].Mol Cancer Ther,2012,11(1)∶204-213.

[26]Hata A,Katakami N,Yoshioka H,et al.Erlotinib after gefitinib failure in relapsed non-small cell lung cancer: clinical benefit with optimal patient selection[J].Lung Cancer,2011,74(2)∶268-273.

[27]Miller VA,Hirsh V,Cadranal J.Subgroup analysis of LUX-Lung 1:a randomized phaseⅢtrial of afatinib (BIBW 2992)+best supportive care(BSC)versus placebo+BSC in patients with NSCLC failing 1-2 lines of chemotherapy and erlotinib or gefitinib[J].J Thorac Oncol,2010,5(12 Suppl 7)∶S557-S558.

[28]Campbell A,Reckamp KL,Camidge DR,et al.PF-00299804(PF299)patient(pt)-reported outcomes (PROs)and efficacy in adenocarcinoma(adeno)and nonadeno non-small cell lung cancer(NSCLC):A phase(P)Ⅱtrial in advanced NSCLC after failure of chemotherapy (CT)and erlotinib(E)[J].J Clin Oncol(Meeting Abstracts),2010,28(15 Suppl)∶7596.

[29]Morgillo F,Martinelli E,Troiani T,et al.Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors[J].PLoS One,2011,6(12)∶e28841.

[30]Dienstmann R,De Dosso S,Felip E,et al.Drug development to overcome resistance to EGFR inhibitors in lung and colorectal cancer[J].Mol Oncol,2012,6(1)∶15-26.

[31]Johnson ML,Riely GJ,Rizvi NA,et al.PhaseⅡtrial of dasatinibforpatientswithacquiredresistanceto treatment with the epidermal growth factor receptor tyrosine kinase inhibitors erlotinib or gefitinib[J].J Thorac Oncol,2011,6(6)∶1128-1131.

[32]Janjigian YY,Azzoli CG,Krug LM,et al.PhaseⅠ/Ⅱtrial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib[J].Clin Cancer Res,2011,17(8)∶2521-2527.

[33]Schiller JH,Akerley WL,Brugger W,et al Results from ARQ 197-209:A global randomized placebocontrolled phaseⅡclinical trial of erlotinib plus ARQ 197 versus erlotinib plus placebo in previously treated EGFR inhibitor-naive patients with locally advanced or metastatic non-small cell lung cancer(NSCLC)[J].J Clin Oncol,2010,28(18 Suppl)∶LBA7502.

[34]Normant E,Paez G,West KA,et al.The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models[J].Oncogene,2011,30(22)∶2581-2586.

[35]Kobayashi N,Toyooka S,Soh J,et al.The anti-proliferative effect of heat shock protein 90 inhibitor,17-DMAG,on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor[J].Lung Cancer,2012,75 (2)∶161-166.

[36]Morgillo F,D′Aiuto E,Troiani T,et al.Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors[J].Lung Cancer,2011,71(3)∶283-290.

[37]Donev IS,Wang W,Yamada T,et al.Transient PI3K inhibition induces apoptosis and overcomes HGF-mediated resistance to EGFR-TKIs in EGFR mutant lung cancer[J].Clin Cancer Res,2011,17(8)∶2260-2269.

[38]Felip E,Gridelli C,Baas P,et al.Metastatic nonsmall-cell lung cancer:consensus on pathology and molecular tests,first-line,second-line,and third-line therapy[J].Ann Oncol,2011,22(7)∶1507-1519.

[39]Sun L,Zhang Q,Luan H,et al.Comparison of KRAS and EGFR gene status between primary non-small cell lung cancer and local lymph node metastases:implications for clinical practice[J].J Exp Clin Cancer Res,2011,30:30.

[40]IwaiT,MoriyaY,ShiraneM,etal.Continuous inhibitionofepidermalgrowthfactorreceptor phosphorylation by erlotinib enhances antitumor activity of chemotherapy in erlotinib-resistant tumor xenografts[J].Oncol Rep,2012,27(4)∶923-928.

[41]Suda K,Tomizawa K,Osada H,et al.Conversion from the“oncogene addiction”to“drug addiction”by intensive inhibition of the EGFR and MET in lung cancer with activating EGFR mutation[J].Lung Cancer,2012,76 (3)∶292-299.

[42]Giaccone G,Herbst RS,Manegold C,et al.Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer:A phaseⅢtrial-NTACT 1[J].J Clin Oncol,2004,22(5)∶777-784.

[43]Herbst RS,Giaccone G,Schiller JH,et al.Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer:A phaseⅢtrial-NTACT 2[J].J Clin Oncol,2004,22(5)∶785-794.

[44]Herbst RS,Prager D,Hermann R,et al.TRIBUTE:A phaseⅢtrial of erlotinib hydrochloride(OSI-774)combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer[J].J Clin Oncol,2005,23(25)∶5892-5899.

[45]Gatzemeier U,Pluzanska A,Szczesna A,et al.PhaseⅢstudy of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer:The Tarceva Lung Cancer Investigation Trial[J].J Clin Oncol,2007,25(12)∶1545-1552.

[46]Mok T,Wu YL,Thongprasert S,et al.A randomized placebo-controlled phaseⅢstudy of intercalated erlotinib with gemcitabine/platinum in first-line advanced non-small cell lung cancer(NSCLC):FASTACT-Ⅱ[J].J Clin Oncol,2012,30∶Abstr 7519.

[47]Mumenthaler SM,Foo J,Leder K,et al.Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer[J].Mol Pharm,2011,8(6)∶2069-2079.

[48]DaviesAM,HoC,BeckettL,etal.Intermittent erlotinibincombinationwithpemetrexed:phaseI schedules designed to achieve pharmacodynamic separation[J].J Thorac Oncol,2009,4(7)∶862-868.

[49]Riely GJ,Rizvi NA,Kris MG,et al.Randomized PhaseⅡStudy of Pulse Erlotinib Before or After Carboplatin and Paclitaxel in Current or Former Smokers With Advanced Non-small-Cell Lung Cancer[J].J Clin Oncol,2009,27(2)∶264-270.

[50]Cheng H,An SJ,Dong S,et al.Molecular mechanism of the schedule-dependent synergistic interaction in EGFR-mutant non-small cell lung cancer cell lines treated with paclitaxelandgefitinib[J].JHematolOncol,2011,4∶5.

[51]Pan F,Tian J,Zhang X,et al.Synergistic interaction between sunitinib and docetaxel is sequence dependent in human non-small lung cancer with EGFR TKIs-resistant mutation[J].J Cancer Res Clin Oncol,2011,137(9)∶1397-1408.

[52]Jiang Y,Li C,Ma Y,et al.The inhibition of the pemetrexed-activated MAPK pathway via sorafenib is involved in the synergistic mechanism of sorafenib subsequent potentiation of pemetrexed cytotoxicity in EGFR TKI-resistant cell lines[J].Clin Lab,2012,58(5-6)∶551-561.

[53]Shukuya T,Takahashi T,Naito T,et al.Continuous EGFR-TKI administration following radiotherapy for nonsmall cell lung cancer patients with isolated CNS failure[J].Lung Cancer,2011,74(3)∶457-461.

[54]Chang CC,Chi KH,Kao SJ,et al.Upfront gefitinib/erlotinib treatment followed by concomitant radiotherapy for advanced lung cancer:a mono-institutional experience[J].Lung Cancer,2011,73(2)∶189-194.

[55]Yang JJ,Chen HJ,Yan HH,et al.Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non-small cell lung cancer[J].Lung Cancer,2013,79(1)∶33-39.

[56]Chaft JE,Oxnard GR,Sima CS,et al.Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib:implications for clinical trial design[J].Clin Cancer Res,2011,17(19)∶6298-6303.

R730.5/R734.2

A

10.11877/j.issn.1672-1535.2014.12.01.05

#通信作者(Corresponding author),e-mail:malw678@126.com

2013-04-28)

猜你喜欢

获得性吉非腺癌
抗肿瘤药物吉非替尼的合成工艺探讨
“脾主肌肉”在治疗ICU获得性肌无力中的应用
除痰解毒方联合吉非替尼对肺腺癌H1975荷瘤小鼠Twist、Fibronectin表达的影响
益肺解毒方联合顺铂对人肺腺癌A549细胞的影响
HIF-1a和VEGF-A在宫颈腺癌中的表达及临床意义
医院获得性与社区获得性耐甲氧西林金黄色葡萄球菌耐药性差异
BRCA2回复突变与卵巢癌获得性铂类耐药的研究进展
以运动迟缓为主要表现的获得性肝脑变性2例报道
GSNO对人肺腺癌A549细胞的作用
吉非替尼致多系统严重不良反应1例