半内点同伦方法解均衡规划问题
2014-03-06商玉凤陶建武
何 非,商玉凤,梁 心,陶建武
(1.空军航空大学 数学教研室,长春 130022;2.空军航空大学 飞行器控制系,长春 130022)
0 引 言
均衡规划问题在经济学和社会学等领域应用广泛[1-3],文献[4-5]给出了解数学规划问题的动边界组合同伦方法,并将该方法应用到求解变分不等式问题和多目标规划问题中[6-7],与已有的组合同伦内点法相比,应用该方法不需要初始点为可行集的内点,但不能保证终止点一定为可行集的内点.本文给出了求解均衡规划问题均衡点的同伦方法,称为半内点法组合同伦方程,所求问题约束除了含有不等式约束外还有等式约束,且任给x(0)∈RN均可作为初始点,而当同伦参数tk<δ(0<δ<1)时,可以保证同伦路径上的点x(k)∈Ω(0),从而在应用上不需考虑通过解方程组的形式找到初始点,计算方便,并在较弱条件下证明了同伦路径的存在性和收敛性.
1 预备知识
2 同伦路径的存在性与收敛性
[1]Cachon G P,Netessine S.Game Theory in Supply Chain Analysis[M].Dordrecht:Kluwer,2003.
[2]Facchinei F,PANG Jongshi.Exact Penalty Functions for Generalized Nash Problems[M].Heidelberg:Springer,2006:115-126.
[3]Krawczyk J.Numerical Solutions to Coupled-Constraint (or Generalised Nash)Equilibrium Problems [J].Computational Management Science,2007,4(2):183-204.
[4]于波,商玉凤.解非凸规划问题的动边界组合同伦方法 [J].数学研究与评论,2006,26(4):831-834.(YU Bo,SHANG Yufeng.Boundary Moving Combined Homotopy Method for Nonconvex Nonlinear Programming [J].Journal of Mathematical Research and Exposition,2006,26(4):831-834.)
[5]商玉凤,于波.凸规划的动边界组合同伦方法及其收敛性 [J].吉林大学学报:理学版,2006,44(3):357-361.(SHANG Yufeng, YU Bo.Boundary Moving Combined Homotopy Method for Nonconvex Nonlinear Programming and Its Convergence[J].Journal of Jilin University:Science Edition,2006,44(3):357-361.)
[6]SHANG Yufeng,YU Bo.A Constraint Shifting Homotopy Method for Convex Multi-objective Programming[J].Journal of Computational and Applied Mathematics,2011,236(5):640-646.
[7]SHANG Yufeng,XU Qing,YU Bo.A Globally Convergent Non-interior Point Homotopy Method for Solving Variational Inequalities[J].Optimization Methods and Software,2011,26(6):933-943.
[8]MäkeläM M,Neittaanmäki P.Nonsmooth Optimization:Analysis and Algorithms with Applications to Optimal Control[M].Singapore:World Scientific Publishing Company,Inc,1992.
[9]Allgower E L,Georg K.Numerical Path Following[M].Handbook of Numerical Analysis.Vol.5.Amsterdam:[s.n.],1996.