新基因功能验证技术及其在微藻基因克隆中的适用性分析❋
2014-01-22杨官品林根妹
杨官品,林根妹
(中国海洋大学海洋生命学院,山东青岛266003)
新基因功能验证技术及其在微藻基因克隆中的适用性分析❋
杨官品,林根妹
(中国海洋大学海洋生命学院,山东青岛266003)
微藻是指1群真核、单细胞、行光合作用的生物。微藻种类多,分布广泛,有关键生态学功能,也有水产、生物能源应用价值。与模式生物和经济动植物一样,新基因克隆是微藻生物学研究的主要内容。基因组注释、转录组分析和基因分离等依据序列和结构同源性,是从已知到已知的过程;而新基因克隆需锁定序列和验证功能,其中,功能验证是基因克隆的最重要内容。已有的基因功能验证方法有基因敲除、基因沉默、插入突变、基因组编辑等。多种微藻已有遗传转化技术,有望直接采用模式生物和经济动植物的基因功能验证技术克隆新基因。本文归纳了已有新基因功能验证技术,并分析了它们在微藻新基因克隆中的适用性,以促进微藻新基因克隆研究。
微藻;全新基因;基因克隆;遗传转化
第一代测序的强力推动[1]、第二代测序[2]的快速普及、第三代测序[3]和蛋白质组学分析[4]的逐步兴起,使人们能快速、低成本获得海量DNA、RNA和蛋白质序列,并基于这些序列解析众多生物学过程和现象的生理、遗传机制。但是,这些分子生物学研究的主流手段根植于“序列和结构相似性”,对基因功能的认知实际上是“从已知到已知”的过程。不论是基因组测序,还是转录组、蛋白组分析,依据相似性注释的基因只占一定比例且无法知晓这些基因的新功能;而在非模式生物中,可注释基因比例经常更低。同样的情况还见于基因克隆和表达分析。基因克隆经常是基于其他物种相同功能基因的同源性,与依据化学、物理性质差异分离特定物质的过程相似,依据基因间同源性分离基因。尽管常冠以新或全新基因克隆,但这样的“克隆”只能说是分离,不是真正的克隆,更不是从头克隆(Denovo cloning),分离的基因也不是新(New)基因,更不是全新(Novel)基因。基因克隆必须包括锁定基因序列和阐明基因功能2个环节,实际上,两者经常是不可分的过程。即使在目前的技术背景下,锁定新基因序列、阐明新基因功能仍十分困难。因此,从头克隆一个基因并阐明其功能仍然是极其出彩的工作。直至今天,基因的从头克隆仍能发表在顶级期刊上,例如动物育性基因[5]和性别决定基因[6]。试图克隆选定物种的基因时,必须牢记不仅仅要锁定基因序列,还要阐明其功能(包括已知基因的新功能);不只是基于相似性推知基因功能,而是用生物体系证明基因功能。
微藻是指真核、单细胞(少数是细胞集合)、有光合作用能力、能自由生活的一群生物,种类多,分布广,生物学特性复杂,研究基础薄弱。基于结构和序列相似性(同源性)分离微藻基因、注释微藻基因组如火如荼,但从头克隆微藻基因案例仍十分罕见。细菌、真菌、果蝇、线虫、斑马鱼、小鼠、拟南芥、水稻等模式生物基因克隆成就斐然,相关研究方法和策略有望用于微藻基因克隆。本文归纳了已有的锁定基因序列、阐明基因功能的方法,并分析了这些方法在微藻基因克隆中的适用性,期望藉此促进微藻新基因克隆研究。
1 基因敲除(Gene knockout)
基因敲除经同源重组(Homologous recombination)插入阻断目标基因表达,比较敲除前后表型差异阐明基因功能。基因敲除是阐明基因功能最有效方法之一[7]。目标基因可随机选定,亦可依已有认知确定,或经遗传学分析锁定。基因敲除有基因打靶、基因捕获等不同表述。
1.1基因打靶(Gene targeting)
基因打靶指定点敲除或修饰选定基因的过程。动物基因打靶组合使用同源重组和胚胎干细胞培养技术。敲除载体包含正选择标记(如新霉素抗性基因neo)和负选择标记(如单纯疱疹病毒胸腺嘧啶激酶基因HSV-tk、白喉毒素基因DTA)。载体进入胚胎干细胞,neo基因两侧与目标基因同源重组,新霉素筛选获得抗性细胞(正选择),再消除随机整合(负选择)[8]。基于Cre/loxP重组酶系统的基因打靶,可实现时间和位置控制,避免敲除基因导致胚胎死亡而无法观察表型。核移植和体细胞克隆使体细胞基因打靶成为可能[9],但随机整合率高,多基因同步打靶困难。
哺乳动物基因打靶的正负筛选对植物也有效,如水稻waxy基因打靶[10]。拟南芥中可用绿色荧光蛋白表型观察替代新霉素抗性筛选[11]。但植物随机整合频率高,基因打靶效率低。由于非同源末端连接途径活跃,真菌同源重组效率也偏低。遗传修饰关闭非同源末端连接途径可提高粗糙脉孢菌、稻瘟病菌等基因打靶效率[12-13]。
虽未明确使用基因打靶这一表述,但基因打靶在细菌中早有应用。熟悉的大肠杆菌克隆系统的蓝白斑筛选就是基因插入失活基因的例子。同源重组是细菌基因修饰的常用工具。例如,将特定基因侧翼序列组合在基因修饰产物两侧,经同源重组可高效修饰大肠杆菌基因[14-15]。
1.2基因捕获(Gene trapping)
基因捕获载体携带的报告基因与整合位点上内源基因融合,生成报告基因和内源基因调控序列融合体。内源基因突变使性状改变,而报告基因的表达使追寻内源基因成为可能。
基因捕获涉及的内源基因表达调控序列包括启动子和增强子。在将报告基因经同源重组随机植入基因组的过程中,若有内源启动子(Promoter)使报告基因表达,就能根据报告基因选出突变株;同时,报告基因表达引起启动子控制基因的失活,从而依据表型变化可确定启动子控制基因的功能。尽管基因的启动子捕获有随机性,但短时间内可大量敲除基因[16]。增强子(Enhancer)加强基因转录,且增强作用与它和基因的相对方向、位置无关。增强子可增强或阻遏几千碱基对之遥基因转录,也可干涉异源启动子功能。通过同源重组将启动子和报告基因引入基因组,若增强子发挥功能,则报告基因表达强度会改变,且该增强子对应基因决定的性状会受影响。依据报告基因强弱和性状差异,可证实基因功能。增强子基因捕获已成功用于果蝇大规模基因筛选[17],在小鼠中也表现出独特的优势[18]。报告基因lacZ高度灵敏且易检测。经逆转录病毒介导或其他途径将lacZ报告基因构建物随机整合到小鼠胚胎干细胞基因组中,若报告基因按正确方向整合到某基因内含子下游,无移码突变,则产生具活性的β-半乳糖苷酶融合蛋白。若胚胎干细胞形成生殖细胞,则可产生杂合小鼠形成表型。该方法不仅可快速产生大量突变,而且lacZ基因表达位置和时间可反映内源基因表达模式[19]。
基因打靶可敲除任何基因,但耗时费力;而基因捕获高效,但有随机性。国际基因敲除小鼠联盟(The international knockout mouse consortium,IKMC)致力于组合使用基因打靶和基因捕获,开发出定向捕获、条件性基因捕获等方法,以达到覆盖基因更多、打靶效率更高的效果[20]。
目前,包括衣藻、三角褐指藻、微绿球藻等在内的大量真核和原核微藻已经建立起随机整合甚至同源重组遗传转化体系[21-27]。集胞藻中功能基因敲除技术已较为成熟,已有同源重组成功案例。在上下游同源臂间插入抗性基因或报告基因构建基因敲除或启动子捕获载体,转入集胞藻细胞,可阐明选定基因功能[87-88]。在莱茵衣藻基因打靶尝试中发现,单链DNA可显著降低随机整合频率,较双链DNA同源重组效率高[28]。将编码蛋白有博来霉素(Zeocin)抗性的ble基因作为选择标记插入硝酸/亚硝酸还原酶基因,形成线状构建物可电穿孔转入微绿球藻,敲除这2种酶基因[29],很多实验室(包括笔者实验室)正在重复验证这一同源重组系统。但和高等植物类似,微藻中极有可能存在同源重组效率低的问题。可以期待在不久的将来,基因打靶和基因捕获技术将会用于微藻新基因的克隆和功能验证,成为微藻基因克隆研究不可或缺的工具。
2 基因沉默(Gene silencing)
基因沉默通过降低基因表达水平改变表型,从而验证基因功能。基因沉默手段主要是RNA干扰(RNA interference,RNAi)和反义吗啉代寡核苷酸(Morpholino)干扰。RNA干扰通过人工引入完美碱基配对的dsRNA,经Dicer酶、Ago蛋白等(RNA干扰系统)作用形成siRNA,诱导mRNA特异性降解,沉默基因功能,改变对应性状表现[30-31]。引入干扰RNA的方法主要包括显微注射、基因枪、喂食可转录双链RNA细菌、直接双链RNA浸泡、病毒和农杆菌介导转化、电转化等。Morpholino是吗啡啉类似物修饰的反义寡核苷酸,与mRNA前体或与剪切处结合,通过空间位阻特异性抑制翻译或RNA剪切,实现基因沉默[32]。
干扰绿色荧光蛋白报告基因表达证明了RNA干扰在芽殖酵母(Saccharomyces castellii)中的可行性[33]。用此方法阐明功能的酵母基因有端粒酶和二态性相关基因等[34-35]。将RNA干扰构建物导入果蝇和线虫胚胎,已阐明与生殖、胚胎发育、细胞分裂和分化、信号传导通路等生命过程相关的许多基因的功能,并建立起全基因组RNA干扰转基因文库[36-39]。在斑马鱼[40]、小鼠[41]等的基因功能解析中,RNA干扰也是常用方法。RNA干扰与表达谱、蛋白质互作分析[42]、敏感突变株[43]等组合使用,可对任何组织任何发育阶段的基因功能进行研究,同时还可用于反向遗传学研究[44]。RNA干扰同样适用植物,其解析的基因包括拟南芥耐寒性调节基因[45]、有丝分裂相关基因[46]、水稻抗病毒基因[47]等。与果蝇、线虫等模式动物一样,植物RNA干扰库的建立进一步提高了基因功能解析效率[48]。
特别需要明晰RNA干扰蛋白系统和小RNA的区别和关联。小RNA(Small RNA)长约20~30个核苷酸,是基因表达和基因组结构管控的关键因子,调节基因表达、维持基因组稳定。依起源、结构、效应蛋白等可将小RNA分为短干扰RNA(Short interfering RNA,siRNA)、微小RNA(MicroRNA,miRNA)和piwi互作RNA(Piwi-interacting RNA,piRNA)3个主要类群。短干扰RNA源自转入基因、病毒;着丝粒、转座子和其他重复序列;双向mRNA转录本(Convergent mRNA transcript)、正义-反义配对物(Sense-antisense pair)、假基因反义转录本和正常基因正义转录本双链、发卡结构RNA(Hairpin RNA,hpRNA)等。因此,短干扰RNA既可源自外源核酸,也可基因组内部产生。微小RNA是动植物基因组编码的miRNA基因的转录剪切产物,有加帽和加尾修饰。Piwi互作RNA指那些与piwi蛋白结合发挥作用的小RNA,它们控制转座子活动,维持基因组稳定。piRNA前体一般从基因组称为“聚丛(Cluster)”的区域(富含转座子区域)转录而来。除piRNA外,其他2类小RNA发挥功能都需要Dicer酶、Ago蛋白等发挥作用。miRNA、piRNA和内源siRNA源自基因组,而外源siRNA源自人工引入;Dicer酶、Ago蛋白等早已存在,而miRNA可能只存在于多细胞真核生物中。
针对目的基因翻译起始点设计Morpholino,显微注射引入,用实时定量PCR、吖啶橙染色、原位杂交、原位免疫荧光等手段检测基因表达水平,可快速准确验证基因功能[49-50]。该方法已广泛用于斑马鱼、爪蟾、小鼠等生物的基因功能研究。其缺点在于需重复注射且效应短暂,对成体表型几乎无影响,只适用发育初期相关研究。
有用RNA干扰对莱茵衣藻高产H2突变株进行研究的报道。同步敲降3个捕光复合物蛋白基因使表达水平下降,H2生产效率和生物量换能效率升高[51]。可以预期,RNA干扰方法将逐步演变成微藻基因功能研究的主要方法之一。但是,Morpholino在引入、效应维持等问题上都存在困难,微藻中还没有任何尝试。如果添加在培养基中的Morpholino可自由进入微藻细胞,那么,Morpholino将会成为微藻极其有效的基因功能验证方法,值得尝试。
3 图位克隆和基因组目标区重测序
基因克隆包括序列锁定和功能验证2个步骤。基因功能验证可用基因敲除、基因沉默等方法,而基因序列锁定可通过图位克隆或基因组目标区域重测序完成。
图位克隆(Map-based cloning)基于遗传连锁或遗传关联,将特定性状控制区锁定在一个很小的染色体区域(越小越好,如<1c M)的过程。测序该区域对应的细菌人工染色体(BAC)或BAC重叠群,甄别所有但数量很少的功能基因,再比较相对性状对应基因,进一步锁定功能基因,最后通过引入完整功能基因恢复性状表现或敲除基因丧失性状表现验证基因功能。锁定基因序列依赖RFLP、SSR、SNP等分子标记连锁图,因而称为图位克隆。高多态性分子标记和高效基因型分型技术,如基于海量平行测序的RAD[52]等,将进一步提高图位克隆效率。
重测序技术是在已知基因组序列基础上,对群体或个体基因组中的特定区域(甚至全基因组)进行测序,扫描序列变异,甄别基因[53]。在化学诱变突变体中,组合使用重测序方法、定向诱导基因组局部突变技术(Targeting induced local lesions in genomes,TILLING)和多种信息学分析手段,可高效率、高通量识别和筛查基因突变[54-56]。
微藻中,莱茵衣藻已有分子标记连锁图谱构建[57]和图位克隆[58]尝试。但这些尝试基于连锁分析,需经有性生殖和杂交构建分离群体。大多数微藻生活史不详,没有有性生殖或者有性生殖过程难以操控。诱变技术可以创制丰富变异,并且可与人工进化[59-61]结合使用。各种突变技术已在酵母、细菌等遗传改良中广泛使用。近年来,更有离子束注入[62-63]、常温常压等离子体[64]诱变进一步提高诱变深度、诱变效率和诱变安全性。关联分析[65]也早已用于酵母[66]、高等植物[67-68]的基因序列锁定。目前已有大量微藻基因组获得测序[89-95]。在这些基因组序列基础上,既可用高密度标记,也能用重测序分型基因型。因此,“诱变创制变异群体、关联分析或重测序锁定基因序列、基因敲除或沉默验证基因功能”途径将是微藻全新基因克隆的主要手段。
4 插入突变(Insertional mutation)
插入突变将外源DNA随机插入到基因组中,影响插入位点基因正常表达,产生具有突变表型的插入突变体,是1种可以在所有基因中诱导突变的方法。与基因捕获相似,插入序列作为标记可以识别插入位点,追寻内源基因。通过对侧翼序列直接进行同源搜索或染色体步移可获得候选基因,并用反转录或原位杂交等方法对插入突变破坏的基因表达作进一步证实[69-70]。
常用的插入DNA有T-DNA、转座子等。来自根癌农杆菌Ti质粒的T-DNA在基因组中整合,一般只有1~2个拷贝,可引起插入突变[71]。T-DNA插入突变已在拟南芥、水稻等生物的基因功能研究广泛应用。虽然T-DNA插入能产生稳定突变,但仅适用农杆菌介导的遗传转化。另外,T-DNA整合可能引起染色体重排,导致与插入突变无关的表型,为遗传学分析带来困难[72]。转座子可在基因座之间移动,插入基因时可影响基因表达,引起突变。与T-DNA相比,转座子可在转移酶作用下被剪切掉,使生物体恢复野生型表型。因此,可依据突变体表型的可恢复性判定突变是否由转座子插入引起。在斑马鱼中,将基于莫洛尼鼠类白血病假型逆转录病毒载体大规模插入基因组,可快速识别早期脊椎动物发育相关基因[70,73]。
微藻中广泛存在病毒或噬藻体。因此,微藻中也应该能建立插入突变体系。不过,目前还没有任何尝试。相关研究有望成为微藻新基因克隆的1个全新研究领域。
5 基因组编辑(Genome editing)
核酸内切酶早已用于体外DNA分析,俗称分子剪刀,可精确识别和切断核酸序列。结合核酸内切酶切断DNA以及基因组非同源末端连接或同源重组修复机制,可以实现基因组定点修饰,完成基因组编辑[74]。
锌指核酸内切酶就是为基因组编辑设计的1种限制性内切酶-锌指蛋白融合蛋白。锌指核酸内切酶由一系列锌指蛋白单元和非特异性限制性内切酶Fok I切割域融合形成[75],每个锌指蛋白可用其α螺旋上-1~+6氨基酸残基识别1个三联体碱基[76],因此,设计改造氨基酸残基组成就可设计出特异性识别DNA序列的锌指蛋白[77]。当两个特别设计的“锌指蛋白-内切酶”与目标DNA结合,内切酶切断DNA,基因组修复切点时定点引入突变。锌指核酸内切酶已被成功用于果蝇、线虫、斑马鱼和哺乳动物等基因组编辑,其特异位点突变效率与基因敲除相比可提高103~105倍[78],但也存在许多问题,例如锌指蛋白结构间的相似性可能影响识别的特异性,使可操作基因范围受到限制。
转录激活因子样效应物(Transcription activatorlike effectors,TALE)是一类可调节内源基因转录活动的蛋白质,其DNA结合结构域有多个重复单位,每个重复单位由33~35个氨基酸构成,可识别1个碱基对。TALENs是人工合成的含TALE DNA结合域和Fok I切割域的融合蛋白,可用于基因组编辑[79]。与锌指核酸酶相比,TALENs不会有重复单元间的关联影响,相对更易设计,DNA识别更特异[80]。
成簇的规律间隔的短回文重复序列(Clustered regularly interspaced short palindromic repeats,CRISPR)来自特殊的遗传座位,这些遗传座位一般由21~48 bp的回文重复序列和重复序列间26~72 bp非重复性间隔序列组成,侧翼序列为4~20个数量不等的CRISPR相关基因(cas)。CRISPR/Cas系统是1种细菌特有的防御系统[81]。Cas核酸酶受短链RNA引导进行位点特异性DNA切割,并引发细胞使用事先引入的正确的基因序列模板按照相似性进行损伤修复。这种RNA引导的核酸酶技术易于设计、应用广泛,且可将多条引导序列编码到1个CRISPR上,从而实现基因组多个位点同步编辑[82]。CRISPR/Cas介导的基因调节能抑制某些细菌蛋白(如脂蛋白)转录物的生成,转录水平可降低100倍。因此,也可通过对蛋白表达的抑制来研究相关基因功能[83]。
这些方法最初在细菌中研发和应用,并逐渐延伸到一些模式生物、高等动植物[84-86]。虽然目前微藻的相关研究几乎为零,但受其他生物的启发,我们有理由相信这些理念和工具一定会很快引入微藻,开展相关基础研究探索。
6 结语
微藻种类多,分布广,除在生态系统具有不可替代的作用,微藻在水产养殖、生物能源开发、食品饲料研制等方面也有极显著的应用价值。包括基因组测序在内,微藻分子生物学研究正蓬勃开展。但是,微藻新基因克隆案例却很少。已有的尝试也都基于序列和结构的同源性,实质上是从已知到已知的基因序列分离过程。模式生物和经济动植物的新基因克隆需锁定序列,同时在生物体系中验证功能。其中,功能验证是新基因克隆最重要的内容。已有的基因功能验证方法有基因敲除、基因沉默、RNA干扰、基因组编辑等。微藻中有尝试,但还处于起步阶段。值得庆幸的是,多种微藻已有遗传转化技术,有望直接采用模式生物和经济动植物基因功能验证技术来克隆新基因。
本文归纳了模式生物和经济动植物已有新基因功能验证技术,并结合微藻生物学特性分析了这些技术在微藻新基因克隆中的适用性,以促进微藻新基因克隆研究。笔者相信,基因敲除、基因沉默、RNA干扰等技术将很快用于微藻新基因克隆研究;而插入突变、基因组编辑等技术用于微藻新基因克隆可能还需要先克服一些技术瓶颈。另外,任何单一方法都不能适用所有基因功能阐明的需要。微藻特别需要阐明基因功能的方法以加快从头克隆微藻新基因。笔者的归纳和分析将有助于微藻新基因克隆直接采用或仿效借鉴已有新基因功能验证技术。
[1] International Human Genome Sequencing Consortium.Finishing the euchromatic sequence of the human genome[J].Nature,2004,431:931-945.
[2] Bentley D R,Balasubramanian S,Swerdlow H P,et al.Accurate whole human genome sequencing using reversible terminator chemistry[J].Nature,2008,456:53-59.
[3] Huddleston J,Ranade S,Malig M,et al.Reconstructing complex regions of genomes using long-read sequencing technology[J]. Genome Research,2014,24(4):688-696.
[4] Altelaar A F M,Munoz J,Heck A J R.Next-generation proteomics:towards an integrative view of proteome dynamics[J]. Nature Reviews Genetics,2013,14:35-48.
[5] Chung J J,Navarro B,Krapivinsky G,et al.A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa[J].Nature Communications,2011,2:153.
[6] Forconi M,Canapa A,Barucca M,et al.Characterization of sex determination and sex differentiation genes in Latimeria[J]. PLoS ONE,2013,8(4):e56006.
[7] The Comprehensive Knockout Mouse Project Consortium.The knockout mouse project[J].Nature Genetics,2004,36:921-924.
[8] Thomas K R,Capecchi M R.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J].Cell,1987,51:503-512.
[9] Mateyak M K,Obaya A J,Adachi S,et al.Phenotypes of c-Mycdeficient rat fibroblasts isolated by targeted homologous recombination[J].Cell Growth and Differentiation,1997,8:1039-1048.
[10] Terada R,Johzuka-Hisatomi Y,Saitoh M,et al.Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics[J].Plant Physiology,2007,144:846-856.
[11] Haseloff J,Siemering K R,Prasher D C,et al.Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly[J].Proceedings of the National Academy of Sciences of the U-nited States of America,1997,94:2122-2127.
[12] Ninomiya Y,Suzuki K,Ishii C,et al.Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101:12248-12253.
[13] Villalba F,Collemare J,Landraud P,et al.Improved gene targeting in Magnaporthe grisea by inactivation of Mg KU80 required for non-homologous end joining[J].Fungal Genetics and Biology,2008,45:68-75.
[14] Smith G R.Homologous recombination in E.coli:Multiple pathways for multiple reasons[J].Cell,1989,58:807-809.
[15] Zhang Y,Muyrers JPP,Testa G,et al.DNA cloning by homologous recombination in Escherichia coli[J].Nature Biotechnology,2000,18:1314-1317.
[16] Skarnes W C.Entrapment vectors:A new tool for mammalian genetics[J].Nature Biotechnology,1990,8:827-831.
[17] Bier E,Vaessin H,Shepherd S,et al.Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector[J]. Genes and Development,1989,3:1273-1287.
[18] Alien N D,Cran D G,Barton S C,et al.Transgenes as probes for active chromosomal domains in mouse development[J].Nature,1988,333:852-855.
[19] Skarnes W C,Auerbach B A,Joyner A L.A gene trap approach in mouse embryonic stem cells:The lacZ reported is activated by splicing,reflects endogenous gene expression,and is mutagenic in mice[J].Genes and Development,1992,6:903-918.
[20] Ringwald M,Iyer V,Mason J C,et al.The IKMC web portal:A central point of entry to data and resources from the International Knockout Mouse Consortium[J].Nucleic Acids Research,2011,39:D849-D855.
[21] Cha T S,Chen C F,Yee W,et al.Cinnamic acid,coumarin and vanillin:Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga,Nannochloropsis sp.[J].Journal of Microbiological Methods,2011,84:430-434.
[22] Chen H L,Li S S,Huang R,et al.Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis Oculata(Eustigmatophyceae)[J].Journal of Phycological,2008,44:768-776.
[23] Coll J M.Methodologies for transferring DNA into eukaryotic microalgae[J].Spanish Journal of Agricultural Research,2006,4:316-330.
[24] Miyahara M,Aoi M,Inoue-Kashino N,et al.Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation[J].Bioscience,Biotechnology,and Biochemistry,2013,77:874-876.
[25] Neupert J,Shao N,Lu Y,et al.Genetic transformation of the model green alga Chlamydomonas reinhardtii[J].Transgenic Plants Methods in Molecular Biology,2012,847:35-47.
[26] Niu Y F,Yang Z K,Zhang M,et al.Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker[J].BioTechniques,2012:1-3.
[27] Pratheesh P T,Vineetha M,Kurup G M.An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii[J].Molecular Biotechnology,2014,56(6):507-515.
[28] Zorin B,Hegemann P,Sizova I.Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii[J].Eukaryotic Cell,2005,4:1264-1272.
[29] Kiliana O,Benemanna C S E,Niyogib K K,et al.High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108:21265-21269.
[30] Fire A,Xu S,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditiselegans[J].Nature,1998,391:806-811.
[31] Matzke M,Matzke A J M,Kooter J M.RNA:Guiding gene silencing[J].Science,2001,293:1080-1083.
[32] Draper B W,Morcos P A,Kimmel C B.Inhibition of zebrafishfgf8 pre-mRNA splicing with morpholino oligos:A quantifiable method for gene knockdown[J].Genesis,2001,30:154-156.
[33] Drinnenberg I A,Weinberg D E,Xie K T,et al.RNAi in budding yeast[J].Science,2009,326:544-550.
[34] Andreas A.Construction of a long hairpin RNA for knockdown of an endogenous gene in budding yeast[C].Lund:Lund University,2010.
[35] Rodriguez-Caban J,Gonzalez-Velazquez W,Perez-Sanchez L,et al.Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii:An RNAi and yeast two-hybrid study[J].BMC Microbiology,2011,11:162.
[36] Boutros M,Kiger A A,Armknecht S,et al.Genome-wide RNAi analysis of growth and viability in Drosophila cells[J].Science,2004,303:832-835.
[37] Clemens J C,Worby C A,Simonson-Leff N,et al.Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J].Proceedings of the National A-cademy of Sciences of the United States of America,2000,97:6499-6503.
[38] Kamath R S,Fraser A G,Dong Y,et al.Systematic functional analysis of the Caenorhabditis elegans genome using RNAi[J]. Nature,2003,421:231-237.
[39] Kim J K,Gabel H W,Kamath R S,et al.Functional genomic analysis of RNA interference in C.elegans[J].Science,2005,308:1164-1167.
[40] Huang W T,Hsieh J C,Chiou M J,et al.Application of RNAi technology to the inhibition of zebrafish Gt Hα,FSHβ,and LHβ expression and to functional analyses[J].Zoological Science,2008,25:614-621.
[41] Rubinson D A,Dillon C P,Kwiatkowski A V,et al.A lentivirus-based system to functionally silence genes in primary mammalian cells,stem cells and transgenic mice by RNA interference[J]. Nature Genetics,2003,33:401-406.
[42] Piano F,Gunsalus K.RNAi-based functional genomics in Caenorhabditiselegans[J].Current Genomics,2002,3:69-81.
[43] Simmer F,Moorman C,van der Linden A M,et al.Genomewide RNAi of C.elegans using the hypersensitive rrf-3 strain reveals novel gene functions[J].PLoS Biology,2003,1(1):e12.
[44] Green E W,Fedele G,Giorgini F,et al.A Drosophila RNAi collection is subject to dominant phenotypic effects[J].Nature Methods,2014,11:222-223.
[45] Gery C,Zuther E,Schulz E,et al.Natural variation in the freezing tolerance of Arabidopsis thaliana:Effects of RNAi-induced CBF depletion and QTL localisation vary among accessions[J]. Plant Science,2011,180:12-23.
[46] Burgos-Rivera B,Dawe R K.An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis[J].PLoS ONE,2012,7(12):e51388.
[47] Park H M,Choi M S,Kwak D Y,et al.Suppression of NS3 and MP is important for the stable inheritance of RNAi-mediated Rice Stripe Virus(RSV)resistance obtained by targeting the fully complementary RSV-CP gene[J].Molecules and Cells,2012,33:43-51.
[48] Wang L,Zheng J,Luo Y,et al.Construction of a genomewide RNAi mutant library in rice[J].Plant Biotechnology Journal, 2013,11:997-1005.
[49] Agrawal S.Antisense oligonucleotides:Towards clinical trials[J].Trends in Biotechnology,1996,14:376-387.
[50] Nasevicius A,Ekker S C.Effective targeted gene“knockdown”in zebrafish[J].Nature Genetics,2000,26:216-220.
[51] Oey M,Ross I L,Stephens E,et al.RNAi knock-down of LHCBM1,2 and 3 increases photosynthetic H2production efficiency of the green alga Chlamydomonas reinhardtii[J].PLoS ONE,2013,8(4):e61375.
[52] Lorenz K,Cohen B A.Small-and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency[J].Genetics,2012,192:1123-1132.
[53] Ehrenreich I M,Torabi N,Jia Y,et al.Dissection of genetically complex traits with extremely large pools of yeast segregants[J]. Nature,2010,464:1039-1042.
[54] Kettleborough R N W,de Bruijn E,van Eeden F,et al.Highthroughput target-selected gene inactivation in zebrafish[J]. Methods in Cell Biology,2011,104:121-127.
[55] Sood R,English M A,Jones M P,et al.Methods for reverse genetic screening in zebrafish by resequencing and TILLING[J]. Methods,2006,39:220-227.
[56] Stemple D L.TILLING-a high-throughput harvest for functional genomics[J].Nature Reviews Genetics,2004,5:145-150.
[57] Kathir P,LaVoie M,Brazelton W J,et al.Molecular map of the Chlamydomonas reinhardtii nuclear genome[J].Eukaryotic Cell,2003,2:362-379.
[58] Rymarquis L A,Handley J M,Thomas M,et al.Beyond complementation.Map-based cloning in Chlamydomonas reinhardtii[J].Plant Physiology,2005,137:557-566.
[59] Chaturvedi R,Fujita Y.Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level[J].Phycological Research,2006,54:208-219.
[60] Doan T T Y,Obbard J P.Enhanced intracellular lipid in Nannochloropsis sp.via random mutagenesis and flow cytometric cell sorting[J].Algal Research,2012,1:17-21.
[61] Schneider J C,Livne A,Sukenik A,et al.A mutant of Nannochloropsis deficient in eicosapentaenoic acid production[J].Phytochemistry,1995,40:807-814.
[62] 王芝瑶,马玉彬,牟润芝,等.重离子诱变创制高产油微拟球藻新品种[J].生物工程学报,2013,29(1):119-122.
[63] Kazama Y,Ma L,Hirano T,et al.Rapid evaluation of effective linear energy transfer in heavy-ion mutagenesis of Arabidopsis thaliana[J].Plant Biotechnology,2012,29:441-445.
[64] Jiang M,Wan Q,Liu R,et al.Succinic acid production from corn stalk hydrolysate in an E.coli mutant generated by atmospheric and room-temperature plasmas and metabolic evolution strategies[J].Journal of Industrial Microbiology and Biotechnology,2014,41:115-123.
[65] Hirschhorn J N,Daly M J.Genome-wide association studies for common diseases and complex traits[J].Nature Reviews Genetics,2005,6:95-108.
[66] Muller L A H,Lucas J E,Georgianna D R,et al.Genome-wide association analysis of clinical vs.nonclinical origin provides in-sights into Saccharomyces cereυisiae pathogenesis[J].Molecular Ecology,2011,20:4085-4097.
[67] Huang X,Wei X,Sang T,et al.Genome-wide association studies of 14 agronomic traits in rice landraces[J].Nature Genetics,2010,42:961-967.
[68] Li H,Peng Z,Yang X,et al.Genome-wideassociation study dissects the genetic architecture of oil biosynthesis in maize kernels[J].Nature Genetics,2013,45:43-50.
[69] Gaiano N,Amsterdam A,Kawakami K,et al.Insertional mutagenesis and rapid cloning of essential genes in zebrafish[J].Nature,1996,383:829-832.
[70] Golling G,Amsterdam A,Sun Z,et al.Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development[J].Nature Genetics,2002,31:135-140.
[71] Brunaud V,Balzergue S,Dubreucq B,et al.T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites[J].EMBO reports,2002,3:1152-1157.
[72] Parinov S,Sundaresan V.Functional genomics in Arabidopsis:Large-scale insertional mutagenesis complements the genome sequencing project[J].Current Opinion in Biotechnology,2002,11:157-161.
[73] Amsterdam A,Nissen R M,Sun Z,et al.Identification of 315 genes essential for early zebrafish development[J].Proceedings of the National Academy of Sciences of the United States of A-merica,2004,101:12792-12797.
[74] Smith J,Berg J M,Chandrasegaran S.A detailed study of the substrate specificity of a chimeric restriction enzyme[J].Nucleic Acids Research,1999,27:674-681.
[75] Kim Y G,Cha J,Chandrasegaran S.Hybrid restriction enzymes:Zinc finger fusions to Fok I cleavage domain[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93:1156-1160.
[76] Dreier B,Beerli R R,Segal D J,et al.Development of zinc finger domains for recognition of the 5’-ANN-3’family of DNA sequences and their use in the construction of artificial transcription factors[J].The Journal of Biological Chemistry,2001,276:29466-29478.
[77] Pabo C O,Peisach E,Grant R A.Design and selection of novel Cys2His2 zinc finger proteins[J].Annual Review of Biochemistry,2001,70:313-340.
[78] Porteus M H,Carroll D.Gene targeting using zinc finger nucleases[J].Nature Biotechnology,2005,23:967-973.
[79] Miller J C,Tan S,Qiao G,et al.A TALE nuclease architecture for efficient genome editing[J].Nature Biotechnology,2011,29:143-148.
[80] Huang P,Xiao A,Zhou M,et al.Heritable gene targeting in zebrafish using customized TALENs[J].Nature Biotechnology,2011,29:699-700.
[81] Horvath P,Barrangou R.CRISPR/Cas,the immune system of bacteria and archaea[J].Science,2010,327:167-170.
[82] Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339:819-823.
[83] Sampson T R,Saroj S D,Llewellyn A C,et al.A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J].Nature,2013,497:254-257.
[84] Jiang W,Zhou H,Bi H,et al.Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J].Nucleic Acids Research,2013,41:e188.
[85] Shen B,Zhang X,Du Y,et al.Efficient knockin mouse generation by ssDNA oligonucleotides and zinc-finger nuclease assisted homologous recombination in zygotes[J].PLoS ONE,2013,8(10):e77696.
[86] Zu Y,Tong X,Wang Z,et al.TALEN-mediated precise genome modification by homologous recombination in zebrafish[J].Nature Methods,2013,10:329-331.
[87] Williams J G K.Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803[J].Methods in enzymology,1988,167:766-778.
[88] Aoki S,Kondo T,Ishiura M.A promoter-trap vector for clockcontrolled genes in the cyanobacterium Synechocystis sp.PCC 6803[J].Journal of Microbiological Methods,2002,49:265-274.
[89] Armbrust E V,Berges J A,Bowler C,et al.The Genome of the diatom Thalassiosira pseudonana:Ecology,evolution,and metabolism[J].Science,2004,306:79-86.
[90] Bowler C,Allen A E,Badger J H,et al.The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J].Nature,2008,456:239-244.
[91] Gobler C J,Berry D L,Dyhrman S T,et al.Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics[J].Proceedings of the National Academy of Sciences of the U-nited States of America,2011,108:4352-4357.
[92] Merchant S S,Prochnik S E,Vallon O,et al.The Chlamydomonas genome reveals the evolution of key animal and plant functions[J].Science,2007,318:245-250.
[93] Moreau H,Verhelst B,Couloux A,et al.Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage[J].Genome Biology,2012,13:R74.
[94] Pan K,Qin J,Li S,et al.Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica(Eustigmatophyceae)as revealed by its genome sequence[J].Journal of Phycology,2011,47:1425-1432.
[95] Prochnik S E,Umen J,Nedelcu A M,et al.Genomic qnalysis of organismal complexity in the multicellular green alga Volυox carteri[J].Science,2010,329:223-226.
Function-Verifying Techniques of Novel Genes and Their Applicability in Gene Cloning of Microalgae
YANG Guan-Pin,LIN Gin-Mei
(College of Marine Life Sciences,Ocean University of China,Qingdao 266003,China)
In microalgae,a group of eukaryotic,single cellular and photosynthesis-performaing microbes belong.Diverse microalgae inhabit various environments,and many of them are of values to aquaculture and biofuel exploitation.Being similar to model organisms and economic animals and plants,cloning novel genes is one of the major researching activities of microalgal biology.Genome annotation,transcriptome analysis and gene isolation are based on sequential and structural homology,which are actually a process of searching the homologs by using known queries.In contrast,cloning a novel gene needs to obtain the sequence of a gene and most crucially verify its function at the same time.The currently available methods of verifying the function of a gene includes gene knockout,gene silencing,insertional mutation,genome editing and among others.Genetic transformation has met success in many microalgal species,making function verifying of microalgal genes by adopting directly the methods available for model organisms and economic animals and plants possible.Here we reviewed these methods and analyzed their applicability to microalgae.Such an analysis may aid to cloning novel microalgal genes.
microalga;novel gene;gene cloning;genetic transformation
Q785
A
1672-5174(2014)10-072-08
责任编辑 高 蓓
国家海洋局海洋生物活性物质与现代分析技术重点实验室开放课题资助;国家自然科学基金项目(31270408)资助
2014-04-09;
2014-04-23
杨官品(1963-),男,教授,博导,主要从事藻类遗传学研究。E-mail:yguanpin@ouc.edu.cn