心脏钠电流与其他离子流的相互作用及其临床意义
2014-01-21吴志娟
吴志娟,李 泱
(解放军总医院心内科,北京 100853)
心脏电活动是多种离子流共同作用的结果。维持静息电位的钠−钙交换体电流(sodium-calcium exchanger current,INCX)、内向整流钾电流(inward rectifier potassium current,IK1)等;参与0相除极的L型钙电流(L-type calcium current,ICa,L)、快失活钠电流(rapidly inactivating sodium current,INa,peak);参与复极的快激活延迟整流钾电流(rapidly activated delayed rectifier potassium current,IKr)、慢激活延迟整流钾电流(slowly activated delayed rectifier potassium current,IKs)、瞬时外向钾电流(transient outward potassium current,Ito)、IK1、ICa,L、晚钠电流(late sodium current,INa,Late);参与4相自动除极的起搏电流(funny current,If)、T型钙电流(T-type calcium current,ICa,T)、IK1、乙酰胆碱激活钾电流(acetylcholine activated potassium current,IK,Ach)等。近年发现诸多离子流存在复杂而动态的相互影响和相互作用,其中某种离子流的变化,将会影响到其他离子流。心脏钠离子流(cardiac sodium ion current,INa)参加心肌细胞动作电位(action potential,AP)的除极、复极过程,对AP的传导有重要作用。钠通道病变可致多种心律失常的发生。本文就心脏钠通道与各离子流间的相互作用及心律失常的关系作一综述。
1 心脏钠通道与各离子流间的相互作用
1.1 钠电流特征及对动作电位的贡献
心肌细胞的钠通道是由SCN5A基因编码的蛋白质Nav1.5构成,正常情况下,心肌细胞除极时,心肌细胞膜上的钠通道激活开放,钠离子顺离子梯度快速内流形成INa,peak,从而产生可传播的AP除极0相,该通道激活1~3ms后失活。生理条件下,也有少数的钠通道激活后不完全失活,引起钠通道关闭不全而出现持续的钠内流,这种峰钠电流后的持续性内向钠电流称为INa,Late,特点是幅值较小,约为峰钠电流的0.1%,持续时间较长(10~l00ms),生理情况下,对AP的影响不大,但病理状态时,钠通道快速开放后不完全性失活增强,即引起INa,peak的增加,表现为钠离子不断内流,使AP过度延长,引起各种心律失常。
1.2 钠电流与钾离子流相互作用
无论是IK1或者是IKr均与INa产生相互作用,进而以INa依赖的方式影响心脏传导,且只有在钠通道功能没有减弱的情况下,调控IK1才会起作用[1,2]。类似的现象还表现在三磷酸腺苷(adenosine triphosphate,ATP)敏感性钾电流(adenosine triphosphate sensitive potassium current,IK,ATP)对传导的调控上。而IKs减慢心脏传导的作用,则不依赖于INa[3]。这表明钾通道对钠通道调控存在一定的差异性。
1.3 INa与IKr的相互作用
将突变型INa通道和野生型IK1通道质粒共转染至HEK293细胞上,可使AP过度延长,>30s,导致70%的HEK293细胞死亡,而野生型INa通道与IK1通道共转时,细胞全部存活。进一步,再加入IKr通道的质粒后,AP时程缩短,细胞死亡数显著减少,若此时加入IKr阻断剂,将明显延长AP时程,并呈现剂量依赖性细胞死亡特征[4],提示三者在对AP的贡献上存在密切的功能联系。
1.4 INa与IKs的相互作用
de la Rosa等[5]在使用长QT综合征(long Q-T syndrome,LQTS)老鼠模型研究中发现,IKs阻滞之后出现早期钠通道重构,并在心室传导系统和心脏肥大的发生中导致形态和功能的异常。可能的机制是通过调控α-subunit和β1-subunit从而上调Na通道,提示Ikr与钠通道之间的相互作用。
1.5 INa与IK1的相互作用
编码IK1的基因KCNJ2的E299V突变使IK1内向电流减弱,外向电流增强[6]。该文对进一步使用精确的几何三维模拟心室模型进行预示:将钠电流下降20%,与IK1的E299V突变具同效性及异效叠加性,均可使心室兴奋性下降,增加室性心律失常的发生,其机制有待进一步探索。
1.6 INa与Ito的相互作用
Deschênes等[7]应用蛋白免疫共沉淀在新生大鼠心室肌细胞中Navβ1被Kv4.x抗体沉淀下来,表明Ito和INa亚基结构之间存在结构或功能上的联系。在此之前即有发现[8,9],Navβ1调节Kv4编码的钾通道在野生心肌细胞的功能,另一方面,沉默Navβ1基因也使KChIP2在mRNA和蛋白水平上减少,Kv4.x蛋白也相应地下降,导致Ito密度显著下调。值得注意的是,KChIPs(Kv channel-interacting proteins)是调节Kv4编码电流的主要元件,若使用KChIP2的特定Kv通道相互作用蛋白类小于扰RNA类(siRNAs)对新生大鼠心室肌细胞进行KChIP2的转录后基因沉默,则发现在Ito降低的同时,Na通道表达也显著下降。进一步研究显示,KChIP2沉默可在信使RNA(mRNA)水平上抑制钠通道α和β1单元,使其通道基因和蛋白的水平下降。
1.7 钠电流与钙离子流相互作用
INa,peak因其失活缓慢的特点,可增加Na+内流,进而影响平台期多种离子通道和离子交换体的活动过程[10]。由于钠通道失活延缓或不完全,导致细胞内Na+浓度增加,将通过Na+/Ca2+反向交换使细胞内钙超载[11],延长动作电位时程(action potential duration,APD),从而诱发早后除极(early afterdepolarizations,EADs)和室性心律失常。而各种因素导致胞内Ca2+浓度的升高,或大量Na+内流,使INCX激活,内向电流增加,从而易诱发晚后除极(delay afterdepolarizations,DADs)[12]。相反,L型钙电流(ICa,L)的开放,将使细胞内钙离子增加,后者则通过激活钙调蛋白(calmodulin,CaM)对INa,peak产生重要影响,其机制可能是通过Ca2+[13−16]或Ca2+/CaM[17,18]的直接作用。另有研究表明[19],钙通道对钠通道的调控是由钙−钙调蛋白依赖性蛋白激酶2型(Ca2+/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)通过多个磷酸化位点调节Nav1.5通道改变其失活曲线所致。
1.8 钠电流及与其他离子流相互作用的临床意义
钠通道的病变,与室性心律失常、心房颤动及心肌缺血、心力衰竭等器质性心脏病所致心律失常[20]、长QT综合征[21]、Brugada综合征[22]、Lev-Lengre综合征[23]等相关;INa,peak与心脏收缩舒张功能[24]、心脏的复极储备及反向频率依赖性有关[25,26];与EADs的发生,以及T波电交替的出现,继而导致心律失常的发生有直接作用关系[27];INa,peak的非正常变化,可使心脏传导紊乱,窦房结功能丧失,致婴儿猝死综合征(sudden infant death syndrome,SIDS)等。此外有研究表明心房肌细胞的INa,peak密度比心室肌细胞多[28],早发心房颤动患者的3.2%存在SCN5A基因突变[29],除长QT综合征外,有些病理情况(如充血性心力衰竭)易发生心房颤动,可能与心房APD/ERP的延长有关[30]。故选择性抑制INa,peak有望成为治疗先天性及获得性离子通道性疾病的有效策略[31]。另有人报道[27],在42例日本SIDS中,有1例发现KCNH2-T895M和SCN5A-G1084S共突变。对此的一种解释为由于相反的门控异常情况,KCNH2电流存在一种精细的干扰,在有额外因素的作用下,如存在SCN5A-G1084S突变时,增加心律失常的发生;另一种解释为该患者同时存在LQTS与Brugada 综合征,KCNH2-T895M突变致LQT2,SCN5AG1084S致Brugada综合征。由于这两种突变有不同的门控性质,它们对该患者可能有同等的引起心律失常的机会。由于心脏电活动是多种离子流共同作用的结果,仅一种或几种离子流单独的改变并不能很好地解释心律失常的复杂机制,在心律失常的药物治疗方面也存有缺陷,现有抗心律失常药物虽可控制症状,但疗效不佳,甚至诱发新的心律失常。根据钠通道本身的重要特点、及其与心脏多种离子流通道存在相互作用关系,寻找针对离子流相互作用的药物可能更符合客观实际。如抗心绞痛药物雷诺嗪(ranolazine)同时阻滞INa,L和IKr,长期应用并不延长QT间期,从而减少致心律失常的发生[32]。
2 总结与展望
综上,钠通道与心脏各疾病及心肌细胞各离子流通道存在重要的相互作用,多种离子流共同作用在心肌细胞电传导过程中发挥重要的作用。其作用机制有直接的也有间接的,可能与通道的电压门控性相关,尚待进一步探求和研究。研究INa与其他电流的相互作用,对于揭示心肌细胞正常电活动以及心律失常发生的机制提供了新的靶点,为探寻临床药物治疗心律失常开辟新的方向。
【参考文献】
[1]Veeraraghavan R,Poelzing S.Mechanisms underlying increased right ventricular conduction sensitivity to flecainide challenge[J].Cardiovasc Res,2008,77(4):749−756.
[2]Larsen AP,Olesen SP,Grunnet M,et al.Pharmacological activation of IKr impairs conduction in guinea pig hearts[J].J Cardiovasc Electrophysiol,2010,21(8):923−929.
[3]Veeraraghavan R,Larsen AP,Torres NS,et al.Potassium channel activators differentially modulate the effect of sodium channel blockade on cardiac conduction[J].Acta Physiol(Oxf),2013,207(2):280−289.
[4]Fujii M,Ohya S,Yamamura H,et al.Development of recombinant cell line co-expressing mutated Nav1.5,Kir2.1,and hERG for the safety assay of drug candidates[J].J Biomol Screen,2012,17(6):773−784.
[5]de la Rosa AJ,Domínguez JN,Sedmera D,et al.Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis[J].Cardiovasc Res,2013,98(3):504−514.
[6]Deo M,Ruan Y,Pandit SV,et al.KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia[J].Proc Natl Acad Sci USA,2013,110(11):4291−4296.
[7]Deschênes I,Armoundas AA,Jones SP,et al.Post-transcriptional gene silencing of KChIP2 and Navbeta1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents[J].J Mol Cell Cardiol,2008,45(3):336−346.
[8]Deschênes I,DiSilvestre D,Juang GJ,et al.Regulation of Kv4.3 current by KChIP2 splice variants:a component of native cardiac I(to)[J]? Circulation,2002,106(4):423−429.
[9]Deschênes I,Tomaselli GF.Modulation of Kv4.3 current by accessory subunits[J].FEBS Lett,2002,528(1−3):183−188.
[10]Cheung JY,Zhang XQ,Song J,et al.Coordinated regulation of cardiac Na(+)/Ca(2+)exchanger and Na(+)-K(+)-ATPase by phospholemman(FXYD1)[J].Adv Exp Med Biol,2013,961:175−190.
[11]Burashnikov A,Antzelevitch C.Role of late sodium channel current block in the management of atrial fibrillation[J].Cardiovasc Drugs Ther,2013,27(1):79−89.
[12]Gomis-Tena J,Saiz J.Role of Ca2+-dependent Cl-current on delayed afterdepolarizations.A simulation study[J].Ann Biomed Eng,2008,36(5):752−761.
[13]Wingo TL,Shah VN,Anderson ME,et al.An EF-hand in the sodium channel couples intracellular calcium to cardiac excitability[J].Nat Struct Mol Biol,2004,11(3):219−225.
[14]Shah VN,Wingo TL,Weiss KL,et al.Calcium-dependent regulation of the voltage-gated sodium channel hH1:intrinsic and extrinsic sensors use a common molecularswitch[J].Proc Natl Acad Sci USA,2006,103(10):3592−3597.
[15]Young KA,Caldwell JH.Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin[J].J Physiol,2005,565(Pt 2):349−370.
[16]Chagot B,Potet F,Balser JR,et al.Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5[J].J Biol Chem,2009,284(10):6436−6445.
[17]Mori M,Konno T,Morii T,et al.Regulatory interaction of sodium channel IQ-motif with calmodulin C-terminal lobe[J].Biochem Biophys Res Commun,2003,307(2):290−296.
[18]Kim J,Ghosh S,Liu H,et al.Calmodulin mediates Ca2+sensitivity of sodium channels[J].J Biol Chem,2004,279(43):45004−45012.
[19]Ashpole NM,Herren AW,Ginsburg KS,et al.Ca2+/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites[J].J Biol Chem,2012,287(24):19856−19869.
[20]Gou ZP,Sun YZ,Zhang CT,et al.Role of late sodium current in ventricular arrhythmia in rabbit models of heart failure[J].Acta Med Univ Sci Technol Huazhong,2013,42(2):152−155.[苟志平,孙玉真,张存泰,等,晚钠电流在兔心力衰竭模型室性心律失常中的作用[J].华中科技大学学报(医学版),2013,42(2):152−155.]
[21]Quan XQ,Zhang CT,Lv JG,et al.Effect of antiarrhythmic peptide on ventricular arrhythmia in rabbit long QT syndrome model[J].J Clin Cardiol,2008,24(1):51−54.[全小庆,张存泰,吕家高,等.抗心律失常肽对兔长QT综合征模型室性心律失常的影响[J].临床心血管病杂志,2008,24(1):51−54.]
[22]Vatta M,Dumaine R,Varghese G,et al.Genetic and biophysical basis of sudden unexplained nocturnal death syndrome(SUNDS),a disease allelic to Brugada syndrome[J].Hum Mol Genet,2002,11(3):337−345.
[23]Tan HL,Bink-Boelkens MT,Bezzina CR,et al.A sodium-channel mutation causes isolated cardiac conduction disease[J]. Nature, 2001, 409(6823):1043−1047.
[24]Undrovinas AI,Belardinelli L,Undrovinas NA,et al.Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current[J].J Cardiovasc Electrophysiol,2006,17 Suppl 1:169−177.
[25]Wu L,Ma J,Li H,et al.Late sodium current contributes to the reverse rate-dependent effect of IKr inhibition on ventricular repolarization[J].Circulation,2011,123(16):1713−1720.
[26]Wu L,Rajamani S,Li H,et al.Reduction of repolarization reserve unmasks the proarrhythmic role of endogenous late Na(+)current in the heart[J].Am J Physiol Heart Circ Physiol,2009,297(3):1048−1057.
[27]Otagiri T,Kijima K,Osawa M,et al.Cardiac ion channel gene mutations in sudden infant death syndrome[J].Pediatr Res,2008,64(5):482−487.
[28]Burashnikov A,Di Diego JM,Zygmunt AC,et al.Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation:differences in sodium channel inactivation between atria and ventricles and the role of ranolazine[J].Circulation,2007,116(13):1449−1457.
[29]Olesen MS,Yuan L,Liang B,et al.High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation[J].Circ Cardiovasc Genet,2012,5(4):450−459.
[30]Li D,Melnyk P,Feng J,et al.Effects of experimental heart failure on atrial cellular and ionic electrophysiology[J]. Circulation, 2000, 101(22):2631−2638.
[31]Antzelevitch C,Nesterenko V,Shryock JC,et al.The role of late I Na in development of cardiac arrhythmias[J].Handb Exp Pharmacol,2014,221:137−168.
[32]Scirica BM,Morrow DA,Hod H,et al.Effect of ranolazine, an antianginal agent with novel electrophysiological properties,on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome:results from the Metabolic Efficiency with Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36(MERLIN-TIMI 36)randomized controlled trial[J].Circulation,2007,116(15):1647−1652.