APP下载

东莨菪内酯的生物活性研究进展

2013-12-23侯秋莉杨振国张永强

天然产物研究与开发 2013年10期
关键词:内酯提取物活性

侯秋莉,杨振国,丁 伟,2,张永强,2*

1西南大学植物保护学院2西南大学农药研究所,重庆400716

东莨菪内酯(scopoletin)又称东莨菪素、莨菪亭、莨菪酚,是一种重要的香豆素类化合物,其化学名称为7-羟基-6 甲氧基香豆素(化学结构式见图1)。其在氯仿或乙酸中的结晶体为浅黄色或白色针状,熔点为205~207 ℃[1],易溶于氯仿、热乙醇、热乙酸、N-甲基吡咯烷酮、二甲基亚砜等高极性有机溶剂中,微溶于水,其溶液在365 nm 的紫外光下显示蓝色荧光[2]。由于东莨菪内酯的良好杀螨活性,全国农药标准化技术委员会于2012 年正式将其通用名称定为“甲氧香螨酯”(农标字2012 第005号)。

图1 东莨菪内酯化学结构式Fig.1 Chemical structural formula of scopoletin

植物受到外界生物及非生物不良环境的刺激后,会产生一些次生代谢物抵御干扰。东莨菪内酯是植物体内的一种重要的酚类植物抗毒素,当植物受到病原菌、害虫或其他植物及环境变化等因素的干扰时,能够大量合成和累积东莨菪内酯,用于防御不良因素的干扰。东莨菪内酯存在于多个科的110000 余种[3,4]植物中,主要分布于菊科(Asteraceae)、旋花科(Convolvulaceae)、十字花科(Cruciferae)、杜鹃花科(Ericaceae)、大戟科(Euphorbiaceae)、豆科(Fabaceae)、楝科(Meliaceae)、桑科(Moraceae)、茜草科(Rubiaceae)、芸香科(Rutaceae)、茄科(Solanaceae)、伞形科(Umbelliferae)等多个科的多种植物中,其中在黄花蒿(Artemisia annua)茎叶、茵陈蒿(A. capillaris)叶、丁公藤(Erycibe obtusifolia)茎、拟南芥(Arabidopsis thaliana)全株、诺丽(Morinda citrifolia)果实、苦楝(Melia azedarach)种子等多种植物中的含量相对较高。因此,东莨菪内酯也被赋予了多种药理活性以及杀虫、抗菌杀菌、杀螨、化感等农用生物活性。现就近年来国内外对东莨菪内酯这一天然活性化合物的生物活性研究进展进行综述。

1 东莨菪内酯的药理活性及药动学研究

1.1 抗肿瘤活性

东莨菪内酯的抗肿瘤活性一直备受医学界的关注,狗骨柴(Tricalysia dubia)[5]、红果小芸木(Micromelum minutum)[6]、黄花蒿[7]等植物中具有较强细胞毒素活性的物质即为东莨菪内酯。目前报道较多的是东莨菪内酯对前列腺癌PC3 细胞以及T 淋巴瘤细胞的抗肿瘤活性[8,9]。东莨菪内酯能阻断肿瘤细胞血管内皮生长因子受体-2 的自身磷酸化及下游信号通路,抑制纤维母细胞生长因子(FGF-2)及细胞外信号调节激酶(ERK1/2)的活性,从而使肿瘤细胞血管生成受阻,抑制原发肿瘤细胞的生长和转移,并诱导肿瘤细胞凋亡[10]。研究表明,东莨菪内酯的抗肿瘤活性位点主要为C-6 的酚羟基和C-7 的甲氧基,对其C-6 的酚羟基引入烷氧基后,其衍生物对乳腺癌细胞MCF-7 和MDA-MB231 及结肠癌HT-29 的抑制活性比东莨菪内酯提高10 余倍[11,12]。此外,其4-烷氧基衍生物也具有显著地细胞毒素活性[13]。目前,Khuda-Bukhsh 等[14]研制了东莨菪内酯聚合物纳米胶囊,可增强人体黑色素肿瘤细胞A375 对东莨菪内酯的吸收和利用,显著提高其抗肿瘤活性。

1.2 降血压、血脂活性

东莨菪内酯能够调节Fe3+与活性氧(ROS)螯合,减弱及清除ROS 产生,从而表现出调节心血管疾病的作用[15]。高甘油三酯血症是重要的心血管疾病,其中脂蛋白脂酶(LPL)是重要的致病因素,而东莨菪内酯具有提高LPL 活性的作用,从而表现出治疗高甘油三酯血症的作用,其机制是在通过增加LPL 的mRNA 的合成,从而增加了LPL[16]。此外,在心血管疾病方面,东莨菪内酯具有诱导人体骨髓性白血病细胞的凋亡,并激活细胞核因子κB 及抗血小板凝聚的作用[17]。Olivera 等[18]报道,东莨菪内酯具有抑制大鼠离体主动脉环收缩的作用,很可能缓解动脉粥样硬化所导致的心肌缺血。

1.3 解痉活性

Ca2+在痉挛中具有重要的作用,东莨菪内酯可调控Ca2+平衡而具有解痉挛活性[19]。0.1 μM 东莨菪内酯能显著激活红细胞膜的Ca2+-ATP 酶和Mg2+-ATP 酶,0. 25 μM 东莨菪内酯能显著激活Na+-K+-ATP 酶,可有效调节机体的离子平衡[20],且对GH4C1细胞诱导的Ca2+上调抑制率为15.2%,即东莨菪内酯具有调节Ca2+平衡的作用[21]。Oliveira 等[22]发现东莨菪内酯能有效抑制苯肾上腺素的活性,增强肌钙蛋白与Ca2+的亲和力,从而起到解痉挛的作用。

1.4 抗炎及镇痛活性

东莨菪内酯是药用植物藏药雪莲(Saussurea involucrata)[23]、紫花前胡(Angelica decursiva)[24]、月桂(Litsea guatemalensis)[25]等抗炎和镇痛的主要活性物质。东莨菪内酯主要通过抑制一氧化氮(NO)合酶和环氧化酶(COX-2)的活性,抑制炎症过程中产生的NO 对机体的危害[26]。Mahattanadul 等[27]的东莨菪内酯对小鼠反流性食管炎和慢性胃溃疡的调控作用研究也证明了这一点。中药丁公藤注射液的主要活药理活性物质为东莨菪内酯,临床上用于治疗风湿性关节炎。研究表明,东莨菪内酯可降低大鼠的关节炎指数,减少滑膜组织中血管的生成[28]。此外,东莨菪内酯能够竞争性的抑制高尿酸血症小鼠中黄嘌呤氧化酶的活性,减少尿酸的产生,进而对抗由高尿酸血症引起的痛风性关节炎[29]。

1.5 保肝作用

含有东莨菪内酯的药用植物对肝炎、肝硬化及肝脏损伤具有良好的保护作用[30]。Chang 等[31]发现芙蓉菊(C. chinensis)水提取物对CCl4致损的小鼠肝脏具有显著地保护和治疗作用的活性物质为东莨菪内酯;Han 等[32]报道在胆汁导管结扎的小鼠模型中,东莨菪内酯使淤胆型肝纤维化变弱,保护肝脏的功能;Yin 等[33]发现刺天茄(S.indicum)种子提取物中具有抗乙型肝炎病毒及细胞毒素活性的活性成分为东莨菪内酯;Noh 等[34]报道日本栗(Castanea crenata)内壳提取物含有东莨菪内酯,其对乙醇诱导慢性氧化效应的小鼠肝脏细胞具有较强的保护作用,可抑制乙醇诱导产生的氧化酶(CAT、SOD、GPx、GR)活性。另外,日本栗内壳提取物对饲喂高脂肪的小鼠的肝脂质沉着症也具有较强地抑制作用[35]。

1.6 增强记忆活性

东莨菪内酯是一种有效的天然乙酰胆碱酯酶抑制剂[3],在老年性痴呆症模型小鼠中,东莨菪内酯可抑制大脑海马体突触体的AChE 作用于烟碱乙酰胆碱受体,促进乙酰胆碱的释放,提高了老年性痴呆症患者的学习和记忆能力[4,36]。东莨菪内酯及其衍生物对AChE 的抑制作用,主要通过C-6 和C-7 上的的官能团作用于AChE 的Trp286、Tyr124、Tyr341和Phe295 等氨基酸残基而发挥抑制活性[37]。此外,诺丽果的果实富含东莨菪内酯,其氯仿提取物对乙酰胆碱酯酶的抑制活性最强,对莨菪碱导致小鼠记忆损失的保护作用,且提取物与东莨菪内酯对小鼠的行为、生物化学及大脑血液流动的影响相似[38]。

1.7 其他药理活性

东莨菪内酯还具有其他药理活性,例如东莨菪内酯具有降温作用,能显著地降低正常活动家兔及由大肠杆菌内毒素致热的家兔的体温[39];东莨菪内酯可通过抑制酪氨酸酶活性,进而抑制黑色素的合成,具有美白功能;东莨菪内酯的乙酰胆碱酯酶抑制作用,在临床上有应用于缩瞳和降眼压[40]。

1.8 药动学研究

东莨菪内酯的药动力学研究主要集中在大鼠肠道、体胃的吸收和渗透方面。在大鼠体内,东莨菪内酯口服吸收快,在10 min 左右即可达峰,口服后血浆半衰期t1/2=(14.1 ±0.6)min。东莨菪素在大鼠胃中2 h 的吸收百分率为76.3l%,在结肠、十二指肠、回肠、空肠的吸收率分别为46.25%,40.54%,38.21%,32.77%;不同质量浓度、pH 值对东莨菪素在大鼠全肠道的吸收没有显著性影响,药物的吸收呈一级动力学过程,吸收机制主要为被动扩散,这与体外试验相一致;东莨菪素在胃肠道均有较好的吸收[41]。Galkin 等[42]通过Caco-2 模型对香豆素类口服药物的膜透性和细胞毒性进行了评估,结果表明该类药物的有很好的渗透性,在肠道内的吸收较好,但又不只局限于吸收,对线粒体功能也有一定影响。

2 东莨菪内酯的杀虫活性

东莨菪内酯对昆虫的生物活性主要表现为拒食、抑制生长、触杀、胃毒等方面,其中在拒食和抑制生长的研究较多。Leszcynski 等[43]发现小麦叶中东莨菪内酯等甲氧基酚类化合物对麦长管蚜(Sitobion avenae)具有显著的拒食活性。据此,有学者将小麦低温驯化后,使得小麦叶中东莨菪内酯等酚类化合物的含量显著提高,表现出良好的抗虫和抗病性[44]。甘薯(Ipomoea batatas)块根富含东莨菪内酯,对小菜蛾(Plutella xylostella)幼虫具有显著地生长抑制作用和胃毒作用[45],其块根被金针虫(Conoderus spp.和Systena elongata)、玉米根虫(Diabrotica balteata)、甘薯跳甲(Chaetocnema confinis)、白蛴螬(Phyllophaga spp.)等地下害虫的危害率与其东莨菪内酯的含量呈负相关关系[46]。Vera 等[47]报道了含200 μg/g 的东莨菪内酯饲料对草地夜蛾(Spodoptera frugiperda)幼虫的选择性拒食率为61%;源于黄花蒿的东莨菪内酯与人工饲料混合对尘污灯蛾(Spilarctia oblique)幼虫具有明显的拒食和抑制生长作用,东莨菪内酯(>100 μg/g)对尘污灯蛾幼虫的生物活性与印楝素(50 μg/g)无显著性差异[48]。

东莨菪内酯不仅对同翅目、鞘翅目及鳞翅目的昆虫具有拒食及抑制生长作用,其对等翅目和双翅目的昆虫也具有拒食及毒杀活性。Adfa 等[49]发现东莨菪内酯对台湾乳白蚁(Coptotermes formosanus)表现出显著的拒食活性,同时发现,其抗白蚁的活性位点主要为C-6 和C-7 的烷氧基。据此,Adfa 等[50]将香豆素修饰为6-烷氧基香豆素和7-烷氧基香豆素,且不饱和烷氧基及环烷氧基能显著提高抗白蚁活性。Tunón 等[51]发现南木蒿(A. abrotanum)的细枝和叶的甲苯提取物对埃及伊蚊(Aedes aegypti)具有显著地驱避活性,其提取物中主要含有东莨菪内酯和香豆素。此外,东莨菪内酯为诺丽果叶甲醇提取物主要活性物质,提取物对斯氏按蚊(Anopheles stephensi)、致倦库蚊(Culex quinquefasciatus)及埃及伊蚊幼虫具有显著地触杀活性[52]。

3 东莨菪内酯的杀螨活性

东莨菪内酯对植食性螨类的生物活性研究起始于黄花蒿杀螨活性的研究,张永强等[53]系统研究了黄花蒿不同月份及其不同部位的不同溶剂提取物对朱砂叶螨(Tetranychus cinnabarinus)的触杀活性,结果表明:黄花蒿七月份叶的丙酮提取物中东莨菪内酯含量最高,对朱砂叶螨的LC50值(48h)为0.105 mg/mL,并且对柑桔全爪螨(Panonychus citri)和酢浆草岩螨(Petrobia harti)也表现出强烈的触杀活性,对朱砂叶螨还具有一定的产卵抑制活性[54]。Tunón 等[51]发现南木蒿地上部分乙醇提取物主要为东莨菪内酯和香豆素,对蓖子硬蜱(Ixodes ricinus)有较好的驱避作用。

东莨菪内酯的杀螨活性具有明显的温度效应和亚致死效应,其对朱砂叶螨雌成螨的最佳毒力温度为23.2 ℃,在亚致死剂量下能使朱砂叶螨种群的发育和繁殖速率降低,且不易产生抗药性[55,56],原因可能与东莨菪内酯对朱砂叶螨的多靶标作用机理有关[56]。东莨菪内酯处理朱砂叶螨后,能够显著抑制螨体内超过氧化物岐化酶(superoxide dismutase,SOD)和过氧化物酶(peroxidase,POD);对过氧化氢酶(catalase,CAT)、羧酸酯酶(carboxylesterase,CarE)和谷胱甘肽S-转移酶(gultathione S transferases,GSTs)表现为激活作用;对螨体的神经系统靶标——乙酰胆碱酯酶(acetylcholinesterase,AChE)、单胺氧化酶(monoamine oxidase,MAO)、Na+-K+-ATP 酶及Ca2+-Mg2+-ATP 酶的酶活性也表现为抑制作用,并推测东莨菪内酯可能是一种神经毒剂[53,57]。

4 东莨菪内酯的抑菌活性

4.1 东莨菪内酯的诱导抗菌活性

植物在受到病原菌或外来物质的刺激时,可诱导合成更多的东莨菪内酯,提高其抵抗能力[58]。2,4-D[59]、茉莉酸甲酯[60]、细胞分裂素[61]、阿氟曼链霉菌(Streptomyces scabiei)及其毒素thaxtomin A[62]等均可诱导烟草细胞中东莨菪内酯的含量增加,提高其抗菌活性。源于疫酶根腐病(Phytophthora megasperma)的无致病性糖蛋白也能诱导烟叶中东莨菪内酯含量的增加,显著增强烟株对烟草花叶病毒(TMV)的抗性[63]。东莨菪内酯在烟草中的抗菌活性需要通过转化为东莨菪苷,才能有效发挥作用[64],此过程需要烟草葡萄糖基转移酶(TOGTs)的协助,其主要调控基因是Togt1 和Togt2,且基因的表达受水杨酸(SA)信号系统的调控[65,66]。但过度使东莨菪内酯转化为东莨菪苷,对烟草的组织也是有害的[67]。此外,核黄素(维生素B2)也能诱导烟草细胞中东莨菪内酯的合成,其作用机理不属于水杨酸信号系统控制,而是依赖于磷脂酶C (PLC)和磷脂酶D (PLD)的表达[68]。

东莨菪内酯也是巴西橡胶树(Hevea brasiliensis)的一种重要植物抗毒素,棕榈疫霉分泌蛋白质激发子elicitin 可诱导橡胶树叶东莨菪内酯的累积,能有效提高其对橡胶南美叶疫病菌(Microcyclus ulei)等的抗性[69]。

4.2 东莨菪内酯的杀菌活性

东莨菪内酯不仅可提高植物的抗菌作用,也具有杀菌或抑菌作用。0.5 mg/mL 的东莨菪内酯能够完全抑制烟草灰霉病菌的孢子萌发和菌丝生长[70];东莨菪内酯(>0.4 mg/mL)能有效抑制腐皮镰刀菌(Fusarium solani)、尖孢镰刀菌(F.oxysporum)、根霉病菌(Rhizopus stolonifer)和焦腐病菌(Lasiodiplodia theobromae)的菌丝生长[45]。东莨菪内酯对梭形杆菌(F.fusiformis)、半裸镰刀菌(F.semitectum)和链格胞菌(Alternaria alternata)也具有显著的抑制作用[71]。此外,东莨菪内酯对苹果扩展青霉(Penicillium expansum)及其扩展青霉素的累积具有良好的控制作用[72];对侵染白榆(Ulmus pumila)的长喙壳科真菌Ophiostoma ulmi 具有抑制孢子萌发和菌丝生长的活性[73]。Carpinella 等[74]将东莨菪内酯分别与代森锌和萎锈灵复配,可有效减少两者的用量,显著提高了对镰刀菌(F.verticillioides)的抑制效果。

5 东莨菪内酯的化感作用

香豆素类化合物可作用于植物的细胞膜,致使胞内离子平衡紊乱、激素变化、代谢异常等,从而扰乱植物的平衡和光合作用,调控植物的生长[75]。Kim 等[76]发现东莨菪内酯是多种入侵植物的化感物质。在多种杂草中,东莨菪内酯也发挥着化感作用的特性[77]。

东莨菪内酯可调节禾本科植物燕麦(Avena sativa)和梯牧草(Phleum pratense)幼苗根的生长,且高浓度表现为抑制作用,而低浓度则表现为促进作用,其调控作用主要作用于根尖,使根尖分生组织坏死,分泌黑色物质堵塞导管,进而调控植物的生长[78,79],其作用机理主要是保护吲哚乙酸(IAA)免受吲哚乙酸氧化酶的氧化作用,使生长点IAA 含量过高[80]。此外,东莨菪内酯(>0.019 mg/mL)也能显著抑制红根苋(Amaranthus palmeri)和芥菜(Brassica juncea)根的生长,且破坏细胞胚植[81]。另外,东莨菪内酯对双子叶植物的幼苗根抑制较弱,但对叶的抑制作用也较为显著,其化感活性主要通过调节植物体内的相关酶系和气孔的开度,影响其光合作用,从而调节植物的生长[82,83]。

6 结语

东莨菪内酯存在于多个科的多种植物体内,其临床应用十分广泛,但是其研究主要集中在药理学方面,药动力学方面的研究报道较少。在农业应用上,东莨菪内酯对多种农业害虫及害螨具有作用方式多样性和作用靶标多样性的特点,能够减缓或者避免抗药性的产生,具有很好的开发利用价值。但是,现阶段对东莨菪内酯的研究还不是很深入,其杀虫杀螨作用机理尚不清楚,而且目前还没有一个成熟的剂型可以应用于实际生产。因此,要实现东莨菪内酯这一植物源物质的实际应用价值,首先,在医学上需要对其药动力学进行进一步的研究;第二,在农业应用上,需明确东莨菪内酯的杀虫杀螨作用机理,以期发现新的作用靶标,减缓抗性的产生;第三,研究东莨菪内酯的毒力与药剂本身、受体生理代谢、环境条件等多方面因素的关系,为制剂的研发和有效利用提供理论依据。

1 Vasconcelos JMJ,et al.Chromones and flavanones from Artemisia campestris subsp. maritima. Phytochemistry,1998,49:1421-1424.

2 de Sandra V,et al. A method for measuring H2O2based on the potentiation of peroxidative NADPH oxidation by superoxide dismutase and scopoletin. Anal Biochem,1992,206:408-413.

3 Rollinger JM,et al.Acetylchinesterase inhibitory activities of scopoltin and scopoletin discovered by virtual screening of natural products.J Med Chem,2004,47:6248-6254.

4 Hornick A,et al.The coumarin scopoletin potentiates acetylcholine release from synaptosomes,amplifies hippocampal long-term potentiation and ameliorates anticholinergic-and age-impaired memory.Neuroscience,2011,197:280-292.

5 Tamaki N,et al. Rearranged ent-kauranes from the stems of Tricalysia dubia and their biological activities. J Nat Med,2008,62:314-320.

6 Lekphrom R,et al.C-7 oxygenated coumarins from the fruits of Micromelum minutum. Arch Pharm Res,2011,34:527-531.

7 Efferth T,et al. Cytotoxic activity of secondary metabolites derived from Artemisia annua L.towards cancer cells in comparison to its designated active constituent artemisinin.Phytomedicine,2011,18:959-969.

8 Happi EN,et al.Tirucallane triterpenoids from the stem bark of Araliopsis synopsis.Phytochem Lett,2012,5:423-426.

9 Manuele MG,et al.Comparative immunomodulatory effect of scopoletin on tumoral and normal lymphocytes. Life Sci,2006,79:2043-2048.

10 Pan R,et al. Prevention of FGF-2-induced angiogenesis by scopoletin,a coumarin compound isolated from Erycibe obtusifolia Benth,and its mechanism of action. Int Immunopharmacol,2011,11:2007-2016.

11 Zhou JP,et al.Synthesis and antitumor activity of scopoletin derivatives.Lett Drug Des Discov,2012,9:397-401.

12 Liu W,et al.Synthesis and in vitro antitumor activity of novel scopoletin derivatives. Bioorg Med Chem Lett,2012,22:5008-5012.

13 Serra S,et al.Synthesis and cytotoxic activity of non-naturally substituted 4-oxycoumarin derivatives. Bioorg Med Chem Lett,2012,22:5791-5794.

14 Khuda-Bukhsh AR,et al. Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375.Chin J Integr Med,2010,8:853-862.

15 Mladenka P,et al. In vitro interactions of coumarins with iron.Biochimie,2010,92:1108-1114.

16 Yang JY,et al. Effect of scopoletin on lipoprotein lipase activity in 3T3-L1 adipocytes. Int J Mol Med,2007,20:527-531.

17 Kim EK,et al.Scopoletin induces apoptosis in human promyeloleukemic cells,accompanied by activations of nuclear factor kappaB and caspase-3.Life Sci,2005,77:824-836.

18 Oliveria EJ,et al.Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin. Planta Med,2001,67:605-608.

19 Mishra N,et al.Anticonvulsant activity of Benkara malabarica (Linn.)root extract:In vitro and in vivo investigation.J Ethnopharmacol,2010,128:533-536.

20 Ezeokonkwo CA,Obidoa O.Effect of scopoltin on erythrocyte membrane ion motive atpases.Nig J Nat Prod Med,2001,5:37-40.

21 Tammela P,Vuorela P. Miniaturisation and validation of a cell-based assay for screening of Ca2+channel modulators.J Biochem Bioph Meth,2004,59:229-239.

22 Oliveira EJ,et al.Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin. Planta Med,2001,67:605-608.

23 Yi T,et al.Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as“Snow Lotus”herb in traditional Uighur and Tibetan medicines. J Ethnopharmacol,2010,128:405-411.

24 Zhao D,et al.In vitro antioxidant and anti-inflammatory activities of Angelica decursiva.Arch Pharm Res,2012,35:179-192.

25 Simão da Silva KAB,et al.Anti-inflammatory and anti-hyperalgesic evaluation of the condiment laurel (Litsea guatemalensis Mez.)and its chemical composition. Food Chem,2012,132:1980-1986.

26 Ding Z,et al.Anti-Inflammatory effects of scopoletin and underlying mechanisms.Pharm Biol,2008,46:854-860.

27 Mahattanadul S,et al. Effects of Morinda citrifolia aqueous fruit extract and its biomarker scopoletin on reflux esophagitis and gastric ulcer in rats. J Ethnopharmacol,2011,134:243-250.

28 Pan R,et al. Anti-arthritic effect of scopoletin,a coumarin compound occurring in Erycibe obtusifolia Benth stems,is associated with decreased angiogenesis in synovium. Fundam Clin Pharmacol,2010,24:477-490.

29 Ding Z,et al.Hypouricemic action of Scopoletin arising from xanthine oxidase inhibition and uricosuric activity. Planta Med,2005,71:183-185.

30 Ezzat SM,et al.Hepatoprotective constituents of Torilis radiata Moench (Apiaceae).Nat Prod Res,2012,26:282-285.

31 Chang TN,et al. Hepatoprotective effect of Crossostephium chinensis(L.)Makino in rats.The Am J Chinese Med,2011,39:503-521.

32 Han JM,et al.Aqueous extract of Artemisia iwayomogi Kitamura attenuates cholestatic liver fibrosis in a rat model of bile duct ligation.Food Chem Toxicol,2012,50:3505-3513.

33 Yin HL,et al.Four new coumarinolignoids from seeds of Solanum indicum.Fitoterapia,2012,84:360-365.

34 Noh JR,et al.Hepatoprotective effects of chestnut (Castanea crenata)inner shell extract against chronic ethanol-induced oxidative stress in C57BL/6 mice .Food chem toxicol,2011,49:1537-1543.

35 Noh JR,et al. Chestnut (Castanea crenata)inner shell extract inhibits development of hepatic steatosis in C57BL/6 mice fed a high-fat diet.Food Chem,2010,121:437-442.

36 Hornick A,et al.Effects of the coumarin scopoletin on learning and memory,on release of acetylcholine from brain synaptosomes and on long-term potentiation in hippocampus.BMC Pharmacology,2008,8:A36.

37 Anand P,et al.A review on coumarins as acetylcholinesterase inhibitors for Alzheimer's disease. Bioorgan Med Chem,2012,20:1175-1180.

38 Pachauri SD,et al.Protective effect of fruits of Morinda citrifolia L.on scopolamine induced memory impairment in mice:a behavioral,biochemical and cerebral blood flow study. J Ethnopharmacol,2012,139:34-41.

39 Yang K,Zeng CH. Experimental Studies on Antipyretic Mechanisms of Scpoletin. Chin J Drug Appli and Monitor,2006,3:24-29.

40 Thuong PT,et al. Antioxidant activities of coumarins from Korean medicinal plants and their structure-activity relationships.Phytother Res,2010,24:101-106.

41 Xia YF(夏玉凤),et al. Studies on absorption kinetics of scopoletin in rat stomachs and intestines.Chin J Chin Mater Med(中国中药杂志),2008,33:1890-1896.

42 Galkin A,et al.Coumarins permeability in Caco-2 cell model.J Phar Pharmacol,2009,61:177-184.

43 Leszczynski B,et al.Effect of methoxyphenols on grain aphid feedingbehaviour.Entomol Exp Appl,1995,76:157-162.

44 Moheb A,et al.Changes in wheat leaf phenolome in response to cold acclimation.Phytochemistry,2011,72:2294-2307.

45 Peterson JK,et al.Biological activities and contents of scopolin and scopoletin in sweetpotato clones. Hortscience,2003,36:1129-1133.

46 Jackson DM,Bohac JR.Resistance of sweet potato genotypes to adult Diabrotica beetles.J Econ Entomol,2007,100:566-572.

47 Vera N,et al. Toxicity and synergism in the feeding deterrence of some coumarins on Spodoptera frugiperda Smith(Lepidoptera:Noctuidae).Chem Biodivers,2006,3:21-26.

48 Tripathi AK,et al.Insect feeding deterrent and growth inhibitory activities of scopoletin isolated from Artemisia annua against Spilarctia obliqua (Lepidoptera:Noctuidae). Insect Sci,2011,18:189-194.

49 Adfa M,et al. Antitermite activities of coumarin derivatives and scopoletin from Protium javanicum Burm. f.. J Chem Ecol,2010,36:720-726.

50 Adfa M,et al. Antitermite activity of 7-alkoxycoumarins and related analogs against Coptotermes formosanus Shiraki. Int Biodeter Biodegr,2012,74:129-135.

51 Tunon H,et al.Arthropod repellency,especially tick (Ixodes ricinus),exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia,2006,77:257-261.

52 Kovendan K,et al.Larvicidal activity of Morinda citrifolia L.(Noni)(Family:Rubiaceae)leaf extract against Anopheles stephensi,Culex quinquefasciatus,and Aedes aegypti.Parasitol Res,2012,111:1481-1490.

53 Zhang YQ(张永强).Studies on acaricidal action mechanism and bio-guided isolation of bioactive substance from Artemisia annua L.(Compositae:Artemisia).Chongqing:Southwest University(西南大学),PhD.2008.

54 Zhang YQ,et al.Studies on acaricidal bioactivities of Artemisia annua L.extracts against Tetranychus cinnabarinus Bois.(Acari:Tetranychidae).Agr Sci China,2008,7:577-584.

55 Yang ZG(杨振国),et al.Effect of temperature on toxicities of scopoletin and bisdemethoxycurcumin against Tetranychus cinnabarinus (Acari:Tetranychidae).Acta Entom Sin (昆虫学报),2012,54:420-425.

56 Yong XJ(雍小菊),et al. Sublethal effects of scopoletin on the experimental population of the carmine spider mite,Tetranychus cinnabarinus(Boisduval)(Acari:Tetranychidae).Acta Entom Sin(昆虫学报),2011,54:1377-1383.

57 Liang W(梁为),et al.Preliminary study on scopoletin toxicity to Tetranychus cinnabarinus and its acaricidal mechanism.Guangdong Agric Sci(广东农业科学),2011,38:68-71.

58 Gnonlonfin GJB,et al.Review Scopoletin – A coumarin phytoalexin with medicinal properties.Crit Rev Plant Sci,2012,31:47-56.

59 Hino F,et al. Effect of 2,4-Dichlorophenoxyacetic acid on glucosylation of scopoletin to scopolin in tobacco tissue culture.Plant Physiol,1982,69:810-813.

60 Sharan M,et al. Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures.Plant Sci,1998,132:13-19.

61 Grosskinsky DK,et al.Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling.Plant Physiol,2011,157:815-830.

62 Lerat S,et al.Streptomyces scabiei and its toxin thaxtomin A induce scopoletin biosynthesis in tobacco and Arabidopsis thaliana.Plant Cell Rep,2009,28:1895-1903.

63 Chaerle L,et al.Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus.J Plant Physiol,2007,164:253-262.

64 Taguchi G,et al.Scopoletin uptake from culture medium and accumulation in the vacuoles after conversion to scopolin in 2,4-D-treated tobacco cells.Plant Sci,2000,151:153-161.

65 Chong J. Downregulation of a pathogen-responsive tobacco UDP-Glc:Phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation,enhances oxidative stress,and weakens virus resistance. Plant Cell,2002,14:1093-1107.

66 Fraissinet-Tachet L,et al.Two tobacco genes induced by infection,elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives,including salicylic acid.FEBS lett,1998,43:319-323.

67 Gachon C,et al. Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance.Plant Mol Biol,2004,54:137-146.

68 Shirron N,Yaron S. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium.PloS One,2011,6:e18855.

69 Dutsadee C,Nunta C. Induction of peroxidase,scopoletin,phenolic compounds and resistance in Hevea brasiliensis by elicitin and a novel protein elicitor purified from Phytophthora palmivora.Physiol Mol Plant P,2008,72:179-187.

70 El Oirdi M,et al. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen.Environ Microbiol,2010,12:239-253.

71 Goy PA,et al. Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa× Nicotiana debneyi.Planta,1993,191:200-206.

72 Sanzani SM,et al.Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone.Eur Food Res Technol,2008,228:381-389.

73 Valle T,et al.Antifungal activity of scopoletin and its differential accumulation in Ulmus pumila and Ulmus campestris cell suspension cultures infected with Ophiostoma ulmi spores.Plant Sci,1997,125:97-101.

74 Carpinella MC,et al.Antifungal synergistic effect of scopoletin,ahydroxycoumarin isolated from Melia azedarach L.fruits.J Agr Food Chem,2005,53:2922-2927.

75 Einhellig FA.Mode of Allelochemical action of phenolic compounds.In allelopathy:chemistry and mode of action of allelochemicals.Boca Raton:CRC Press,2004.217-238.

76 Kim YO,Lee EJ.Comparison of phenolic compounds and the effects of invasive and native species in East Asia:support for the novel weapons hypothesis.Ecol Res,2011,26:87-94.

77 Bhowmik PC,Inderjit.Challenges and opportunities in implementing allelopathy for natural weed management.Crop Prot,2003,22:661-671.

78 Pollock BM,et al. Studies on roots. II. Effects of coumarin,scopoletin and other substances on growth. Am J Bot,1954,41:521-529.

79 Avers CJ,Goodwin RH. Studies on roots. IV. Effects of coumarin and scopoletin on the standard root growth pattern of Phleum pretense.Am J Bot,1956,43:612-620.

80 Andreae WA.Effect of scopoletin on indoleacetic acid metabolism.Nature,1952,70:83-84.

81 Fay PK,Duke WB.An Assessment of allelopathic potential in Avena germ plasm.Weed Sci,1977,25:224-228.

82 del Corral S,et al. Phytotoxic halimanes isolated from Baccharis salicifolia (Ruiz & Pad.)Pers.Phytochem Lett,2012,5:280-283.

83 Hossain MD,Fujita M. Effect of esculetin on activities of pumpkin glutathione S-transferases and growth of pumpkin seedlings.Biol Plantarum,2009,53:565-568.

猜你喜欢

内酯提取物活性
Co3O4纳米酶的制备及其类过氧化物酶活性
虫草素提取物在抗癌治疗中显示出巨大希望
骨碎补化学成分和生物活性研究进展
中药提取物或可用于治疗肥胖
航天器表面抑菌活性微生物的筛选与鉴定
植物提取物:你意想不到的辣椒
穿心莲内酯滴丸
金丝草化学成分及其体外抗HBV 活性
紫地榆提取物的止血作用
穿心莲内酯固体分散体的制备