APP下载

海上二维拖缆地震参数选择浅析

2013-12-14翟继锋韦成龙曾宪军

海洋信息技术与应用 2013年3期
关键词:压制震源信噪比

翟继锋,韦成龙,曾宪军

(广州海洋地质调查局 广州市 510760)

地震勘探资料采集的中心问题是如何增强有效波,压制干扰波,提高资料分辨率及信噪比,获取高质量的地震记录。观测系统的设计取决于地震勘探任务、工区地震地质条件和勘探方法,总的原则是尽可能使记录到的地下界面得到连续追踪、避免发生有效波彼此干涉、野外施工简单等。海上二维地震勘探,在野外施工中主要使用纵测线观测系统,即激发点和接收点布置在同一条测线上,该系统能得到测线正下方界面的反射信息,所获得的资料易于解释,野外施工方案简单直观,在实际工作中被广泛应用。对于纵测线观测系统来说,涉及选择的参数主要有最大炮检距、最小炮检距、炮间距、道间距、检波器组合参数、覆盖次数、震源能量、震源电缆组合沉放深度、采样率、低截滤波10 个,以下分别进行讨论。

1 二维拖缆地震参数

1.1 最大炮检距

最大炮检距为炮点中心到最远一道中心的距离,图1 中用X1 表示,设计时要以下几个因素作为依据:

(1)时距曲线,力求其近似为双曲线。比较合适的炮检距,可以使正常时差足够大,足以区分一次反射波、多次波以及其他相干噪音;比较大的炮检距,就会使远道的时距曲线近似为高次曲线,从而使记录得到的同相轴不满足双曲线的假设。水平层状介质的地震地质模型地震反射波的时距曲线为:

如果在炮点的附近接收地震波,就可以把水平层状介质的波速简化为均方根速度,则反射波的时距曲线方程可简化为:

由这两个方程可知,当最大炮检距的取值为勘探目标深度的0.7~1.0 倍时,反射波的时距曲线近似为双曲线。

(2)速度分析,力求能获得较高的精度。在水平层状介质中,一般认为射线速度是一种准确的速度,它随着炮检距的增大而增大,当炮检距一定时,射线速度等于均方根速度,即此时的均方根速度可以认为是准确的,此时的炮检距就是所要选用的最大炮检距。由射线速度公式和炮检距公式,可算出最大炮检距约为勘探目标的埋深:

图1 二维拖缆观测系统示意图

(3)动校正拉伸畸变,力求使其小。动校正拉伸的程度,随反射界面深度和炮检距之比的减小而增大,即炮检距小,拉伸程度就小,炮检距大,拉伸程度就大。

百分比动校正拉伸量=(动校正量/双程反射时间)×100%

(4)反射系数,力求其变化尽可能小。反射系数随着炮检距的变化而变化,如果炮检距在小于某个数值时,反射系数几乎不随炮检距变化,则炮检距应当选取这个数值。反射系数可以通过佐普里兹方程来求取,约等于勘探目标的埋深。

(5)高频衰减,力求远道的高频衰减尽可能小。地震波的吸收和衰减随着传播距离的增大而增大,从而使高频信息能量变弱,降低分辨率。

由以上几点可知,合适的最大炮检距应选取勘探目标深度的0.7~1.0 倍。最大炮检距过大,会使远道的反射时距曲线近似为高次曲线,不符合地震勘探中把时距曲线视为双曲线的假设,同时远道的反射系数有较大变化,在资料处理时的动校正拉伸较严重,远道地震信号中的高频信息衰减较厉害。而最大炮检距偏小,则整个排列偏短,不利于接收中深层的地震反射信息,由此造成时距曲线太短,反映不出双曲线的形态,得不到准确速度,而在资料处理叠加的过程中,最关键的是速度参数。因此在选择最大炮检距时,重点应考虑目标层的速度分析精度。

1.2 最小炮检距

最小炮检距是炮点的中心到电缆第一道(近道)的中心的距离,图1 中用X2 表示,应该小于最浅目标层的深度。最小炮检距大一些,确实可以有效地避免震源和作业船产生的部分噪音信号干扰,但却会损失有用的浅层有效信号。

最小炮检距的选取应从以下几方面考虑:

(1)考虑炮检距与叠加特性的关系,选择较小的最小炮检距,通放带会宽一些。

(2)根据作业船噪音情况及地震地质条件,选择能够较好地避免震源和作业船产生的部分噪音信号干扰的最小炮检距。较大的偏移距有利于避开面波、船噪音等干扰。

(3)为满足大炮检距的初至折射静校正或层析成像反演静校正处理的需要,宜采用较小的最小炮检距。

(4)为提高分辨率,宜采用较小的最小炮检距。

随着偏移道数的增加,迭加特性曲线通放带宽度变窄,压制带范围向左移,同时压制范围内,特性曲线的三次极大值幅度变小。说明偏移道数的增加能更好压制与反射波速度相近的多次波,即可以提高分辨率。但是,偏移道数增大,导致压制带宽度变窄,特性曲线二次极大值的幅度增大。因而,与反射波速度相差较大的多次反射波,就有可能进入二次极值带,得不到好的压制效果,所以不能认为偏移道数越大越好。

从施工结果看,250 m 的最小炮检距可以有效地避免震源和作业船产生的噪音信号干扰,但在水深较浅区域,如小于100 m 时,最小炮检距过大就会损失有用的浅层有效信号,而且会使海底难以追踪。因为这时直达波和海底一次反射波几乎同时到达,给去除直达波、追踪海底造成困难,在以往的地震资料中也出现过海底辨认不准确的情况。这主要和水深太浅,最小炮检距偏大有关。野外作业中对最小炮检距应做试验,综合考虑准确追踪海底和减小近道噪音,通过现场处理结果,确定出一个合适的最小炮检距。

1.3 炮间距

因炮点移动的道数与覆盖次数成反比关系,在排列长度及道间距一定时,炮点移动的距离越短,覆盖次数越高。缩短炮点移动的距离,增加覆盖次数,以提高对多次波的压制效果,增强有效反射波的能量,提高资料信噪比。

1.4 道间距

道间距是指相邻2 个接收点之间的距离,图1 中表示为X4。道间距的选择,应保证道与道之间的反射波都能对比。反射波到达相邻两个接收点的时差Δt,应满足下列关系:Δt≤T*/2,式中,T*为反射波的视周期。因反射波的视速度V*是道间距Δx 和时间差Δt 之比值,即:V*=。则,为了能够同时并且可靠地追踪来自深层和浅层的反射波,道间距的最大适合值Δx 应当以浅层反射波的视波长λ*来计算。

道间距的大小会直接影响地震资料的解释工作,影响横向分辨率:道间距偏大,将导致同一层的有效波追踪和辨认的可靠性受到影响,会产生比较严重的空间假频,而且是道间距越大,低频响应也越严重;道间距偏小,将会使野外数据量、工作量及成本大大增加。选取道间距应当以在地震记录上能够可靠辨认同一有效波的相同相位为准则,这主要取决于:相邻的道记录形态的重复性;地震有效波、干扰波和随机振动背景的振动关系;地震波到达相邻道所用时的时差;地震波的视周期以及横向分辨率等。

通过对常规地震资料的频谱、速度分析可知,有效反射波视频率主要分布范围(以最大幅值下降6 dB 计算)约为6~60 Hz;浅层层速度值约为1 800~2 400 m/s,道间距1 800 /(2×60)约为15 m,表明采用12.5 m 道间距可以满足采集精度要求。

目前各地震调查船多使用24 位地震采集记录系统,电缆的道间距均为12.5 m。从地震资料采集结果看,使用12.5 m 的道间距能够在地震记录上清晰地辨认出同一有效波的相同相位。

1.5 检波器组合参数

检波器的排列组合要兼顾压制干扰波和突出有效波这两方面,利用干扰波的视速度、主周期、道间时差、随机干扰的半径以及有几组干扰波,出现的地段,强度的变化特点与激发条件的关系等资料,设计出合理的排列组合参数。检波器组合参数的因素包括:组内距、组合基距、组合内的检波器个数以及组合的形式等。视速度和炮检距为反比关系,即组合内的各检波器的时差随着炮检距的增大而增大。一般认为排列中最近道处的视速度最大,最远道处的视速度最小,因此组合中首尾检波器点的时差最大,其低频响应更加严重,组合排列越长,基距越大,这种现象就越明显。在中深层地震勘探中,利用检波器组合法提高信噪比的同时,要避免低频响应。

常规地震勘探采用的24 位电缆,一般采用12 个或者16 个检波器线性组合作为一道。由于MEMS 新技术的应用,使得检波器在线性度、灵敏度非常高,分辨力、迟滞、重复性、漂移、稳定性等性能得到了极大提高。

1.6 覆盖次数

覆盖次数即地层界面某一点的追踪次数,n=S·N/2·r,其中S 代表一个系数,一般取1;N 代表记录道数;r 代表炮点移动的道数。若增加覆盖次数,迭加特性曲线通放带的宽度和压制带的左边界都不会有多大变化。说明增加覆盖次数,既不会改善因为动校正速度不准确而引起反射波迭加特性变坏的情况,也不会提高压制与反射波速度相近的多次波的能力。但若增加覆盖次数,则压制带的宽度将会加大,压制带范围内的三次极大值将会变小。叠加次数也即覆盖次数,越大则压制带平均值越小,压制效果就越好,所以增大覆盖次数对于提高信噪比是有利的。就是说,覆盖次数的增加,既有利于对多次波的压制,也有利于对与反射波速度相差较大的多次波的压制。总而言之,增大覆盖次数,可以提高压制的效果,提高信噪比,覆盖次数越大,信噪比的改善程度就越大。假设叠加后的信噪比为1,则各目标层所需要的覆盖次数可由下式计算:

选取较大的覆盖次数,能够充分压制高频环境下的干扰噪音,增大目标层的有效反射能量,就能提高资料的信噪比,确保目标层的成像效果。因此,采集中都需选取较大的覆盖次数。

1.7 震源能量

在相同条件下,震源能量越强,得到的信号其信噪比也相应提高。但大震源大能量作业,在接收到更强的有效反射信号的同时,也会接收到更大的多次波等干扰信号,因而资料的信噪比不一定会提高。中深层地震勘探所关心的是信噪比,而不仅仅是反射信号的强弱。

通过对地震地质模型进行计算机模拟来测算最佳的震源能量,再经过野外震源试验来对比验证,确定合适的震源能量,是目前常规二维地震震源能量较好的确定手段。

1.8 震源电缆组合沉放深度

在海洋地震勘探作业中,我们使用电缆中排列组合的水听器记录压力P,若电缆沉放深度记作Z,且地震反射信号中的某一谐波波长为λ,其入射角为θ,则其简要关系式为:

对海洋地震气枪震源来说,激发后所产生的地震波信号,以及由海面反射回来的地震波信号一起向地下传播。由于气枪震源的沉放深度相对于水深和地层厚度而言比较小,可以看做是叠加在一起的两个信号向地下传播。而这两个信号的叠加效果是受气枪震源沉放深度控制的,和地震电缆的情况相同,叠加信号的振幅大小变化也是受气枪震源沉放深度控制。

理论上的分析结果是:震源与电缆沉放的深度相同,并且深度值为按上式算出的使得压力P取最大值的Z 的值,其中的λ 可以认为是对应于目标层的主频波长。

实际上震源、电缆组合的沉放深度,震源激发信号在海水、地层中传播时的扩散、衰减,各界面的反射、折射和散射,海水、地层吸收所产生的各种组合滤波效应,再加上各种各样的噪音干扰,使得电缆中水听器接收到的信号已经发生了变化,电缆接收到的信号波形态与频谱早已不同于原震源波形态与频谱。

以理论值为依据,通过计算机模拟以及在工区中做震源、电缆组合沉放深度试验,可以找到一个最佳的震源、电缆组合沉放深度。

1.9 采样率

合适的采样间隔Δt,可避免间隔过大使离散信号失真及谱畸变出现假频现象的缺点,又可避免采样过密使处理工作量加大的缺点。根据采样定理:

Δt 为采样间隔,fmax为要保护的目的层的最高频率。一个信号周期中至少需要3 个样点(也就是需要两个采样间隔(2Δt))的最小量来定义一个周期的信号。

大部分海区地震调查资料显示,有效反射波频率分布范围(以最大幅值下降6 dB 计算)约为6~60 Hz。计算结果表明选用2 ms 采样可满足采集精度的要求。对于海洋高分辨率地震调查,由于目标体尺度较小,要求有更好的分辨力,一般采样率为1 ms;在小范围的高精度浅层地震调查,采样率要求能够达到0.5 ms。

1.10 低截滤波

常规地震勘探中,对低截滤波的确定都倾向于低截频率尽可能地低一些,尽可能多地保留原始采集信号。在海上地震勘探中,涌浪等会产生几到十几Hz 的噪音,罗盘水鸟等拖缆悬挂装置挂上异物会在附近道产生有规律的抖动等,低频干扰影响到资料信噪比。当低频干扰偏大时,在处理时滤波虽然可以将之除掉,但低频有效信号也同时损失,因此在干扰比较大的情况下,降低低截滤波的门槛值是没有益处的。利用现场处理的噪音分析,可以获得低频干扰的频率范围和幅值大小。良好的海况一般采用的低截滤波值为3 Hz。当然,震源、电缆深度都加深后,涌浪等环境噪音大大降低,可以不加低截滤波。

2 结 论

[1] 吴志强,许行,童思友,等.南黄海前新生代地震采集技术研究[J].海洋地质动态,2008,24(8):20-25.

[2] 吴志强.南黄海中部隆起海相地层油气地震勘探关键技术研究[D].中国海洋大学博士学位论文,2009:61-87.

[3] 罗文造,韦成龙,王立明,等.海上地震勘探主要采集参数的选取与验证——以南海北部某调查区为例[J]. 热带海洋学报,2009,28(4):93-101.

[4] 徐淑合.提高深层下传能量地震采集方法研究[D].中国海洋大学硕士论文,2003:48-63.

[5] 陈业斗.黄海浅层多道高分辨率地震资料处理[D].中国海洋大学硕士论文,2011:13-18.

[6] 王永刚,李振春,高洪海,等.增加深层下传能量的野外试验及理论分析[J].石油地球物理勘探,2001,36(2):231-244.

[7] 刘振东.泌阳凹陷复杂断裂带地震勘探采集处理方法研究与应用[D].中国地质大学博士学位论文,2010:24-37.

[8] 冯凯.三维地震观测系统最优化设计的方法研究[D].成都理工大学工学博士论文,2006:9-23.

[9] 钱光萍,康家光,王紫娟.基于模型的地震采集参数分析及应用研究[J].物探化探计算技术,2001,23(2):109-114.

[10] 王桂华.海上地震数据采集主要参数选取方法[J].海洋石油,2004,24(3):35-39.

[11] 史乃祥,王德利.深水区地震波传播特性研究[J].吉林地质,2005,24(2):82-86.

[12] 罗文造,韦成龙,王立明,等.南海北部中生界地球物理勘探采集技术[D].2007年度成果报告,2008:6-39.

[13] 舒虎,易劲松,邢涛,等.2010年度区域综合地球物理补充调查地震资料处理报告[D].中国科学院地质与地球物理研究所,2010:4-44.

[14] 黄文彬,郭嵩魏,李刚毅.X 地区三维地震观测系统研究[J].内蒙古石油化工,2008,17:94-99.

[15] 杨金华.三维观测系统的设计优化[J].工程技术,2006:128.

[16] 王玉娇,李刚.障碍物密集区三维地震观测系统的设计与应用[J].大众科技,2006,7:39-40.

[17] 夏建军,唐东磊,黄永平.三维地震采集观测系统压噪能力的估算及应用[J].石油地球物理勘探,2009,44(2):140-145.

[18] 秦广胜,蔡其新,刘学伟.满足叠前偏移要求的三维地震观测系统设计[J].石油地球物理勘探,2010,45(S1):25-29.

[19] 韦成龙,翟继锋,王立明,等.海上地震勘探电缆接收道性能分析[J].气象水文海洋仪器,2009,4:7-10.

猜你喜欢

压制震源信噪比
两种64排GE CT冠脉成像信噪比与剂量对比分析研究
基于深度学习的无人机数据链信噪比估计算法
一种新型无人机数据链抗压制干扰技术的研究
空射诱饵在防空压制电子战中的应用
低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像
震源的高返利起步
压制黄土塬区复杂地表条件下折射多次波的组合激发技术
可控震源地震在张掖盆地南缘逆冲断裂构造勘探中的应用
保持信噪比的相位分解反褶积方法研究
对GPS接收机带限高斯噪声压制干扰的干扰带宽选择分析