APP下载

广州大夫山雨季林内外空气TSP和PM2.5浓度及水溶性离子特征

2013-12-09肖以华旷远文佟富春陈步峰裴男才黄俊彪潘勇军

生态学报 2013年19期
关键词:森林公园水溶性颗粒物

肖以华,李 炯,旷远文,*,佟富春,习 丹,陈步峰,史 欣,裴男才,黄俊彪,潘勇军

(1.中国林业科学研究院热带林业研究所, 广州 510520; 2. 中国科学院华南植物园, 广州 510650;3. 华南农业大学林学院, 广州 510642)

广州大夫山雨季林内外空气TSP和PM2.5浓度及水溶性离子特征

肖以华1,李 炯2,旷远文2,*,佟富春3,习 丹2,陈步峰1,史 欣1,裴男才1,黄俊彪1,潘勇军1

(1.中国林业科学研究院热带林业研究所, 广州 510520; 2. 中国科学院华南植物园, 广州 510650;3. 华南农业大学林学院, 广州 510642)

TSP;PM2.5;水溶性离子;空气污染;林内外;广州市

我国城市化的迅速发展使城市的环境负荷日趋增重,空气中粉尘、烟雾、有害气体日趋增多,空气中的悬浮颗粒污染物,如总悬浮颗粒物(Total suspended particulate,TSP)和细颗粒物(Particulate matter less than 2.5, PM2.5),已逐渐成为空气污染的首要污染物[1- 2]。PM2.5指的是空气中空气动力学直径小于等于2.5 μm的悬浮颗粒物,它是空气中重要的污染物之一,其来源及化学组成均非常复杂,除了各种污染源的一次排放外,还包括气态污染物经由复杂的空气光化学反应而形成的二次污染物。PM2.5因其危害人体健康[3]、携带病菌和污染物[4]、降低能见度[5- 8]、引发灰霾[9]等原因,已经成为国内外公众、政府和学者共同关注的重要问题。为了改善城市的空气环境和提高人居环境质量,各级政府大力营造城市森林,通过森林庞大的冠幅来阻尘、滞尘、吸尘和降解污染物的生态功能,发挥其生态效益。

森林对空气颗粒物的影响已成为研究者的热点[10- 12],Kourtchev在德国发现混交林能减少大气PM2.5中约12%的有机碳含量[13];在日本中部针叶林和挪威云杉林研究发现森林林冠明显改变了PM2.5中硫的质量浓度和沉降速率[14- 15]。在国内,也有学者关注不同纬度森林区域PM2.5的浓度变化和离子组成[16],不同林分类型中总悬浮颗粒物、PM2.5和PM10的浓度季节、日变化规律等[17- 18],但不同地区由于污染源、气候、地理位置等因素差异,TSP和PM2.5的质量浓度和化学组成特征也有较大区别,森林对空气TSP和PM2.5的质量浓度和化学组成成分的影响相关研究也比较少。本研究采用平行同步采样法(Real-time),对林内、外进行24h收集TSP和PM2.5样品,研究森林对空气颗粒物的影响,旨在为计量城市森林生态效益及城市森林生态建设等提供参考。

1 研究地概况和研究方法

1.1 研究地概况

大夫山森林公园位于珠三角腹地——广州市南部的番禺区,是典型的城乡结合部,滨临珠江入海口。地理位于北纬22°57′—22°59′,东经113°17′—113°18′,以低山丘陵为主,最高海拔为226.6 m。森林公园总面积约1000 hm2,是广州地区生态型森林公园。优势树种主要是马尾松(Pinusmassoniana)、马占相思(Acaciamangium)、粉紫荆(Bauhiniavariegata)、红花紫荆(Bauhiniablakeana)、大叶紫薇(Lagerstroemiaspeciosa)。大夫山森林公园地处南亚热带湿润季风气候区,年平均气温为21.8 ℃,最冷的1月份平均气温仍达13.3 ℃,而7月份平均气温为29 ℃,年无霜期长达346 d。年平均降水量为1650 mm,降雨量的季节分配不均,旱季雨季分明。降雨集中在4—9月,占全年的81%;相对湿度一般是81%。年均日照时数2000 h。热量充足,降水丰沛,雨热同期,对区域内植被繁衍、生长极为有利。

1.2 研究方法

1.2.1 采样仪器、时间及方法

采用国产智能中流量采样器(TH 150AO)采集大气样品,2台采样器设置于大夫山森林公园内空旷草坪地,周边无高大建筑和局地点源污染源,分别采集TSP和PM2.5;另2台采样器设置于距林外采样点30 m的林内——即在“广州市森林生态效益监测网络”林内气象场分别采集TSP和PM2.5。圆形采样器距地面高度为人体平均呼吸高度(1.5 m),采样流量为100 L/min,每天9:00更换石英纤维滤膜(59 mm),每张滤膜对TSP和PM2.5的采集时间为24 h。滤膜在采样前后均在干燥器中以平衡法干燥、称重。采样时间贯穿整个雨季(2012年4月至9月),逐月进行;由于空气湿度影响仪器对PM2.5样品的采集,扣除雨天等天气影响,每个观测点得到TSP和PM2.5有效样品各18个,共收集样品72个。

1.2.2 样品分析

1.2.3 质量控制与保证

石英纤维滤膜使用前在马氟炉中灼烧3h以上,温度为600—900 ℃,然后放入铝箔包装, 密封贮存。采样前后将石英纤维滤膜放置于万分之一分析天平平衡48 h后,进行称重。样品采集前对采样器进行流量校准。样品每采集1周再次校准流量,其相对偏差小于5%。

分析用的玻璃器皿于马氟炉中450 ℃中加热8 h,对不能用马氟炉烘干的器皿用丙酮和光谱级正已烷进行溶剂清洗,干燥和清洗后的器皿封口贮存。每10个样品中随机抽取1个进行平行分析,测量全程空白并在结果中扣除[20]。

2 结果与分析

2.1林内外TSP和PM2.5质量浓度

研究期间,大夫山森林公园林内外的PM2.5和TSP的质量浓度值见表1。林内外PM2.5的质量浓度平均值分别为(40.18 ± 10.47)和(55.79 ± 13.01) g/cm3;林内外TSP的质量浓度分别为(101.32 ± 33.19)和(116.61 ± 35.36)g/cm3。经方差分析表明,林内外之间的PM2.5和TSP平均质量浓度差异显著(Plt;0.05),PM2.5和TSP的质量浓度无论是最小值还是最大值,林外都要显著高出林内。林内外PM2.5分别占TSP总质量的(39.66 ± 4.16)%和(49.51 ± 4.72)%,林外PM2.5是TSP的一半,说明林外PM2.5是TSP的主要组成部分,而林内的PM2.5浓度值比林外的要低。参照国家环境空气质量标准(GB3095—2012),林内外PM2.5达到国家一级空气质量标准(≤35 μg/m3)的天数概率分别为44%和33%;林内外TSP达到国家一级空气质量标准(≤120 μg/m3)的天数概率分别为72%和56%。从林内外PM2.5与TSP的浓度间关系可知(图1),PM2.5与TSP的浓度间存在明显的相关性,且林内的相关系数R2大于林外;林外的TSP与PM2.5为非线性关系,其方程式为:TSP= 90.59ln(PM2.5)-238.41 (R2= 0.885,Plt;0.01),林内的TSP与PM2.5线性关系方程式为:TSP = 1.41PM2.5+ 20.36(R2= 0.943,Plt;0.01)。

表1 广州大夫山森林公园林内外空气TSP和PM2.5浓度

不同字母表示两两间差异显著(Plt;0.05)

图1 林内外TSP与PM2.5浓度关系Fig.1 Relationship between TSP and PM2.5 concentrations inside and outside forestTSP: 总悬浮颗粒物Total suspended particulate; PM2.5: 小于2.5 μm 细颗粒物 Particulate matter less than 2.5 μm

2.2林内外TSP和PM2.5水溶性离子特征

表2 林内TSP和PM2.5水溶性离子浓度

括号中为标准差

表3 林外TSP和PM2.5水溶性离子浓度

图2 TSP和PM2.5中无机水溶性离子所占的比例Fig.2 The percentages of each water-soluble ion in the TSP and PM2.5

2.3 主要离子间的相关性与结合方式

离子间的相关性分析可以揭示气溶胶中离子间的结合方式。为了解林内外各离子的来源和相互结合情况,对研究期间的离子浓度进行了相关矩阵分析,主要离子间的相关系数如表4所示。

(1)

(2)

表4 林内外TSP和PM2.5的离子间相关系数

续表

Na+NH+4K+Mg2+Ca2+Cl-SO2-4NO-30.020.92*0.87*0.210.310.180.87*林内NH+40.33InsideTSPK+0.400.96Mg2+1.00**0.240.83*Ca2+0.100.150.130.12Cl-0.99**0.350.350.710.28SO2-40.51*0.95**0.92*0.310.170.38NO-30.210.84*0.80*0.260.110.230.62*林外NH+40.14OutsideTSPK+0.200.89*Mg2+0.86*0.110.91*Ca2+0.040.190.10-0.09Cl-0.96**0.360.89*0.270.69SO2-40.460.98**0.92*0.410.680.92*NO-30.300.88*0.69*0.49*0.310.79*0.83*

* 表示显著水平为0.05,**表示显著水平为0.01

图3 计算所得浓度与实验测得浓度相关性图Fig.3 The correlation between calculated and measured ammonium concentration

2.4 离子成分的源解析

2.4.1 海洋源和陆地源的解析

表5 大夫山森林公园林内外雨季TSP和PM2.5中离子成分的比值分析

2.4.2 移动源和固定源的解析

3 结论与讨论

有研究表明,植物能通过冠幅降低树冠内风速,使得空气颗粒物以滞留或停着、附着和粘附3种方式达到消减空气颗粒物的生态效应[23]。从本研究结果来看,林内的PM2.5和TSP平均质量浓度比林外显著减少(Plt;0.05),与广州市区雨季的PM2.5相比减少近50%[21],与城区相比,大夫山森林公园森林发挥了降尘、减尘的作用,为市民提供了一个相对洁净的游憩空间。许多研究者也发现森林植被对空气PM2.5能显著的降低效应。如任启文等[24]对北京元大都遗址公园内不同林地类型及其旁边道路空气颗粒物进行了研究,发现公园森林内的空气PM2.5值明显低于林外道路上的空气PM2.5。郭二果[2]研究了北京西山地区3种典型游憩林对空气中颗粒物的阻滞和吸附效应,指出游憩林能有效降低空气中颗粒物的质量含量。但雨季中,森林对空气PM2.5作用在不同地区、不同森林类型存在差异[2,24- 25],如吴志萍等[26]研究了6种城市绿地环境下空气PM2.5浓度的变化规律,发现雨季林内的空气PM2.5浓度却高于林外;但Cheng Manting和郭二果等研究发现林内的空气PM2.5浓度在雨季要低于林外[2,25],与本研究结果一致。

Mg2+、K+和Ca2+是空气中典型的地壳元素,大多数是半自然或者人为活动造成的,对地表水体的硬度造成影响[30]。从研究结果看,Mg2+、K+和Ca2+在林内外的TSP和PM2.5的质量浓度呈降低的趋势,其主要原因是空气颗粒物通过林冠时被树木叶面滞留,McPherson等和Freer Smith等在植物滞留空气颗粒物的机理研究发现这一研究结果[23,31]。Mg2+、K+在空气颗粒物中相关性显著,主要由于附近餐饮烧烤的植物燃料释放有关。而Ca2+与其它元素各离子的相关性均较弱,说明Ca2+有着不同于其他离子的来源,如土壤尘和建筑粉尘等[32]。

[1] Wang X H, Bi X H, Sheng G Y. Chemical composition and sources of PM10and PM2.5aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 2006, 119(1/3): 425- 439.

[2] Dai W, Gao J Q, Cao G, Ouyang F. Chemical composition and source identification of PM2.5in the suburb of Shenzhen, China. Atmospheric Research, 2013, 122: 391- 400.

[3] Poschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Atmospheric Chemistry, 2005, 44(46): 7520- 7540.

[4] Stracquadanio M, Apollo G, Trombini C. A study of PM2.5and PM2.5-associated polycyclic aromatic hydrocarbons at an urban site in the Po Valley (Bologna, Italy). Water, Air, and Soil Pollution, 2007, 179(1/4): 227- 237.

[5] Anderson T L, Carlson R J, Schwartz S E, Knutti R, Boucher O, Rodhe H, Heintzenberg J. Climate forcing by aerosols-a hazy picture. Science, 2003, 300(5622): 1103- 1104.

[6] Yan F Q, Hu H L, Yu T. Analysis of particulate mass concentration, aerosol number concentration and visibility in Beijing. Particuology, 2004, 2(1): 25- 30.

[7] IPCC. Climate Change 2007-the Physical Science Basis. Cambridge: Cambridge University Press, 2007: 122- 131.

[8] Xu L L, Chen X Q, Chen J S, Zhang F W, He C, Zhao J P, Yin L Q. Seasonal variations and chemical compositions of PM2.5aerosol in the urban area of Fuzhou, China. Atmospheric Research, 2012, 104- 105: 264- 272.

[9] Zhang T, Tao J, Wang B G, Zhu L H, Han J L, Xu Z C. Study on the pollution characteristics of particle number density in Guangzhou during January 2008. Environmental Monitoring in China, 2009, 25(2): 31- 34.

[10] Pio C, Alves C, Duarte A. Organic components of aerosols in a forested area of central Greece. Atmospheric Environment, 2001, 35(2): 389- 401.

[11] Rissanen T, Hyötyläinen T, Kallio M, Kronholm J, Kulmala M, Riekkola M L. Characterization of organic compounds in aerosol particles from a coniferous forest by GC-MS. Chemosphere, 2006, 64(7): 1185- 1195.

[12] Ivan K,Jörg W, Willy M, Thorsten H, Magda C.marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere, 2008, 73(8): 1308- 1314.

[13] Kourtchev I, Warnke J, Maenhaut W, Hoffmann T, Claeys M. Polar organic marker compounds in PM2.5aerosol from a mixed forest site in western Germany. Chemosphere, 2008, 73(8): 1308- 1314.

[14] Matsuda K, Fujimur Y, Hayashi K, Takahashi A, Nakaya K. Deposition velocity of PM2.5sulfate in the summer above a deciduous forest in central Japan. Atmospheric Environment, 2010, 44(36): 4582- 4587.

[15] Horváth L. Dry deposition velocity of PM2.5ammonium sulfate particles to a Norway spruce forest on the basis of S-and N-balance estimations. Atmospheric Environment, 2003, 37(31): 4419- 4424.

[16] Li L, Wang W, Feng J L, Zhang D P, Li H J, Gu Z P, Wang B J, Sheng G Y, Fu J M. Composition, source, mass closure of PM2.5aerosols for four forests in eastern China. Journal of Environmental Sciences, 2010, 22(3): 405- 412.

[17] Guo E G, Wang C, Qie G F, Fang C, Sun Z W, Zhou Z H. Diurnal variations of airborne particulate matters in different seasons in typical recreation forests in west Mountain of Beijing. Acta Ecologica Sinica, 2009, 29(6): 3253- 3263.

[18] Guo E G, Wang C, Peng Z H, Qie G F, Yang W W, Fang C, Zhou Z H. Diurnal variation of airborne particulate matter in 3 typical recreation forests in west mountain of Beijing area in spring. Scientia Silvae Sinicae, 2009, 45(6): 145- 148.

[19] Yu X C, He K B, Ma Y L, Duan F K, Yang F M, Zheng A H, Zhao C Y. Determination of water-soluble inorganic and organic species of aerosols. Environmental Chemistry, 2004, 23(2): 218- 222.

[20] Gu J X, Bai Z P, Li W F, Wu L P, Liu A X, Dong H Y, Xie Y Y. Chemical composition of PM2.5during winter in Tianjin, China. Particuology, 2011, 9(3): 215- 221.

[21] Lai S C, Zou S C, Cao J J, Lee S C, Ho K F. Characterizing ionic species in PM2.5and PM10in four Pearl River Delta cities, South China. Journal of Environmental Sciences, 2007, 19(8): 939- 947.

[22] McInnes L M, Covert D S, Quinn P K, Germani M S. Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. Journal of Geophysical Research, 1994, 99(D4): 8257- 8268.

[23] Freer S P H, Beckett K P, Taylor G. Deposition velocities toSorbusaria,Acercampestre,Populusdeltoids×trichocarpa‘Beaupré’,Pinusnigraand ×Cupressocyparisleylandiifor coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 2005, 133(1): 157- 167.

[24] Ren Q W, Wang C, Qie G F, Yang Y. Airborne particulates in urban greenland and its relationship with airborne microbes. Urban Environment amp; Urban Ecology, 2006, 19(5): 22- 25.

[25] Cheng M T, Horng C L, Lin Y C. Characteristics of atmospheric aerosol and acidic gases from urban and forest sites in central Taiwan. Bulletin of Environmental Contamination and Toxicology, 2007, 79(6): 674- 677.

[26] Wu Z P, Wang C, Hou X J, Yang W W. Variation of air PM2.5concentration in six urban greenlands. Journal of Anhui Agricultural University, 2008, 35(4): 494- 498.

[27] Fang G C, Chang C N, Wu Y S, Fu P F, Yang D G, Chu C C. Characterization of chemical species in PM2.5and PM10aerosols in suburban and rural sites of central Taiwan. The Science of the Total Environment, 1999, 234(1/3): 203- 212.

[28] Saxena A, Kulshrestha U C, Kumar N, Kumari K M, Srivastava S S. Characterization of precipitation at Agra. Atmospheric Environment, 1996, 30(20): 3405- 3412.

[29] Lara L B L S, Artaxo P, Martinelli L A, Victoria R L, Camargo P B, Krusche A, Ayers G P, Ferraz E S B, Ballester M V. Chemical composition of rainwater and anthropogenic influences in the Piracicaba river basin, southeast Brazil. Atmospheric Environment, 2001, 35(29): 4937- 4945.

[30] Tang X Y, Zhang Y H. Atmospheric Environmental Chemistry. Beijing: China Forestry Press, 1990: 345- 347.

[31] Stelson A W, Seinfeld J H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment (1967), 1982, 16(5): 983- 992.

[32] Huang X D, Olmez I, Aras N K, Gordon G E. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmospheric Environment, 1994, 28(8): 1385- 1391.

[33] McPherson E G, Scott K I, Simpson J R. Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment, 1998, 32(1): 75- 84.

[34] Ye B M, Ji X L, Yang H Z, Yao X H, Chan C K, Cadle S H, Chan T, Mulawa P A. Concentration and chemical composition of PM2.5in Shanghai for a 1-year period. Atmospheric Environment, 2003, 37(4): 499- 510.

[35] Yao X H, Chan C K, Fang M, Cadle S, Chan T, Mulawa P, He K B, Ye B M. The water-soluble ionic composition of PM2.5in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36(26): 4223- 4234.

[36] Watson J G, Chow J C, Houck J E. PM2.5chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 2001, 43(8): 1141- 1151.

[37] Lü W Y, Xu H J, Wang X M. Major inorganic water-soluble ions in fine particles collected in autumn in urban Guangzhou. Environmental Science amp; Technology, 2010, 33(1): 98- 101.

参考文献:

[9] 张涛, 陶俊, 王伯光, 朱李华, 韩静磊, 许振成. 2008年1月广州颗粒物数浓度污染特征. 中国环境监测, 2009, 25(2): 31- 34.

[17] 郭二果, 王成, 郄光发, 房城, 孙志伟, 周志海. 北京西山典型游憩林空气颗粒物不同季节的日变化. 生态学报, 2009, 29(6): 3253- 3263.

[18] 郭二果, 王成, 彭镇华, 郄光发, 杨伟伟, 房城, 周志海. 北京西山三种典型游憩林春季空气颗粒物日变化规律. 林业科学, 2009, 45(6): 145- 148.

[19] 余学春, 贺克斌, 马永亮, 段凤魁, 杨复沫, 郑爱华, 赵承易. 气溶胶水溶性无机物及有机物的离子色谱测定. 环境化学, 2004, 23(2): 218- 222.

[24] 任启文, 王成, 郄光发, 杨颖. 城市绿地空气颗粒物及其与空气微生物的关系. 城市环境与城市生态, 2006, 19(5): 22- 25.

[26] 吴志萍, 王成, 侯晓静, 杨伟伟. 6种城市绿地空气PM2.5浓度变化规律的研究. 安徽农业大学学报, 2008, 35(4): 494- 498.

[30] 唐孝炎, 张远航. 大气环境化学. 北京: 高等教育出版社, 1990: 345- 347.

[37] 吕文英, 徐海娟, 王新明. 广州城区秋季大气PM2.5中主要水溶性无机离子分析. 环境科学与技术, 2010, 33(1): 98- 101.

ComparisonofTSP,PM2.5andtheirwater-solubleionsfrombothinsideandoutsideofDafushanforestparkinGuangzhouduringrainyseason

XIAO Yihua1,LI Jiong2,KUANG Yuanwen2,*,TONG Fuchun3,XI Dan2,CHEN Bufeng1, SHI Xin1,PEI Nancai1,HUANG Junbiao1,PAN Yongjun1

1ResearchInstituteofTropicalForestry,ChineseAcademyofForestry,Guangzhou510520,China2SouthChinaBotanicalGarden,ChineseAcademyofSciences,Guangzhou510650,China3CollegeofForestry,SouthChinaAgriculturalUniversity,Guangzhou510642,China

There is national research interest in the dynamics of airborne particulate matter (PM) due to its detrimental effects on air quality and human health. Both regional surveys and locally intensive monitoring of PM, particularly particles less than 2.5 micrometers in diameter (PM2.5), are now being conducted throughout China. The main research emphases include the spatial distribution, chemical characteristics, and main sources of airborne PM2.5in many urban areas, as well as industrial sites.

The Pearl River Delta (PRD) is one of the highly urbanized and industrialized regions in China. Unfortunately, accompanying the rapid eco-social developments, the PRD has also deteriorated in terms of air, soil and water quality during the last few decades. Air pollution has been a serious environmental problem for many years now and frequent haze episodes in this region were often attributed to high concentrations of airborne PM2.5.

TSP;PM2.5;water-soluble ions; air pollution; inside and outside forest ; Guangzhou City

国家林业公益性行业科研专项资助项目(20130430106); 中国林业科学研究院热带林业研究所基本科研业务费专项资助项目(RITFYW2X201104); 中国科学院知识创新工程重要方向项目(KSCX2-EW-J- 28); 广州市森林生态效益监测网络项目(2012- 2013);广州市“青山绿地-林带林区”工程的生态效益监测项目

2013- 05- 02;

2013- 07- 18

*通讯作者Corresponding author.E-mail: kuangyw@scbg.ac.cn

10.5846/stxb201305020888

肖以华,李炯,旷远文,佟富春,习丹,陈步峰,史欣,裴男才,黄俊彪,潘勇军.广州大夫山雨季林内外空气TSP和PM2.5浓度及水溶性离子特征.生态学报,2013,33(19):6209- 6217.

Xiao Y H,Li J,Kuang Y W,Tong F C,Xi D,Chen B F, Shi X,Pei N C,Huang J B,Pan Y J.Comparison of TSP, PM2.5and their water-soluble ions from both inside and outside of Dafushan forest park in Guangzhou during rainy season .Acta Ecologica Sinica,2013,33(19):6209- 6217.

猜你喜欢

森林公园水溶性颗粒物
A2B2型水溶性锌卟啉的合成及其潜在的光动力疗法应用
森林公园游记
龙架山森林公园
矿区旧址森林公园化改造规划设计
南平市细颗粒物潜在来源分析
固定源细颗粒物监测技术现状分析与思考
水溶性肥料在日光温室番茄上的应用
游温州森林公园 享自然山水美景
木菠萝叶中水溶性黄酮苷的分离、鉴定和测定
错流旋转填料床脱除细颗粒物研究