因此,条件S3)也满足。
由定理2知,算子T至少存在3个正解u1,u2,u3,满足:‖ui‖≤d,i=1,2,3,并且
如果u∈K且‖u‖≥a,由式(3)和定理2知u(t)≥ρ‖u‖≥ρa≥My(t)。显然,u2≥a,u1>b>a。所以可得到u1-My,u2-My是边值问题(1)的2个正解。
3 举例
考虑下面边值问题:
(6)
其中:
参考文献/References:
[1] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations[M].Singapore: World Scientific, 1989.
[2] SAMOILENKO A M, PERESTYUK N A. Impulsive Differential Equations[M]. River Edge: World Scientific, 1995.
[3] BAINOV D D, SIMEONOV P S. Impulsive Differential Equations: Periodic Solutions and Applications[M]. Harlow: Longman Scientific and Technical, 1993.
[4] AGARWAL R P, REGAN D O. Multiple nonnegative solutions for second order impulsive differential equations[J]. Appl Math Comput, 2000,114: 51-59.
[5] AGARWAL R P, REGAN D O. A Multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem[J]. Appl Math Comput, 2005,161:433-439.
[6] LI Gaoshang, LIU Xiping, JIA Mei. Positive solutions to a type of nonlinear three-point boundary value problem with sign changing nonlinearities[J]. Comput Math Appl, 2009,57:348-355.
[7] GUO Dajun, LIU Xinzhi. Multiple positive solutions of boundary value problems for impulsive differential equations[J]. Nonlinear Anal, 1995,25: 327-337.
[8] FRIGON M, REGAN D O. Boundary value problems for second order impulsive differential equations using set-valued maps[J]. Appl Anal, 1995,58:325-333.
[9] ELIE P W, HENDERSON J. Positive solutions of boundary value problems for ordinary differential equations with impulsive[J]. Dynamics Contin Discrete Impulsive Syst, 1998,82(4): 285-294.
[10] NIETO J J. Periodic boundary value problems for first-order impulsive ordinary differential equations[J]. Nonlinear Anal, 2002,51:1 223-1 232.
[11] ZHAO Aimin, BAI Zhenguo. Existence of solutions to first-order impulsive periodic boundary value problems[J]. Nonlinear Anal, 2009,71:1 970-1 977.
[12] LIANG Ruixi, SHEN Jianhua. Periodic boundary value problem for second-order impulsive functional differential equations[J]. Appl Math Comput, 2007, 193: 560-571.
[13] LI Jianli, SHEN Jianhua. Periodic boundary value problems for impulsive integro-differential equations of mixed type[J]. Appl Math Comput, 2006, 183: 890-902.
[14] HE Zhimin, YU Jianshe. Periodic boundary value problem for first-order impulsive functional differential equations[J]. J Comput Appl Math, 2002, 138(2):205-217.
[15] JANKOWSKI T. Positive solutions to second order four-point boundary value problems for impulsive differential equations[J]. Appl Math Comput, 2008, 202:550-561.
[16] JANKOWSKI T. Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments[J]. Appl Math Comput, 2008, 197: 179-189.
[17] ZHANG Xuemei, YANG Xiaozhong, GE Weigao. Positive solutions of th-order impulsive boundary value problems with integral boundary conditions in Banach spaces[J]. Nonlinear Anal, 2009, 71:5 930-5 945.
[18] HAO Xinan, LIU Lishan, WU Yonghong. Positive solutions for second order impulsive differential equations with integral boundary conditions[J]. Commun Nonlinear Sci Numer Simul, 2011, 16(1): 101-111.
[19] GUO Dajun. Multiple positive solutions of a boundary value problem fornth-order impulsive integro-differential equations in Banach spaces[J]. Nonlinear Anal, 2005, 63: 618-641.
[20] HU Lili, LIU Lishan, WU Yonghong. Positive solutions of nonlinear singular two-point boundary value problems for second-order impulsive differential equations[J]. Appl Math Comput, 2008, 196: 550-562.
[21] JANKOWSKI T.Positive solutions for second order impulsive differential equations involving stieltjes integral conditions[J]. Nonlinear Anal,2011,74:3 775-3 785.