应用物理学专业课程体系改革与教学内容的优化整合研究
2013-04-29彭勇宜
彭勇宜
摘要:本文基于目前应用物理专业课程体系僵化,教学内容陈旧重复等问题,依据应用物理专业的人才培养目标,提出了课程体系改革,优化重整教学内容的必要性,原则和具体思路。将原有普通物理和理论物理课程优化整合为力学理论、热物理学、电磁理论、近代物理学,并对整合后专业课程开设顺序和时间作出了合理安排。课程体系改革和教学内容的优化整合能大大缩减课时,提高教学效益,突出应用物理的专业特点,为培养合格的应用物理复合人才提供可靠保障。
关键词:应用物理;课程体系;教学内容;优化整合
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)50-0040-02
一、前言
物理学的基本原理渗透在自然科学的各个领域,被称为自然哲学,已成为相关应用技术领域的基础和源泉。应用物理专业是一个以物理学为基础,以“应用物理”为核心和特点,强调将物理学知识与实际应用相结合的专业,以培养既有一定物理理论知识,又有一定实验技能与工程技术的理工复合型人才为目标的专业[1]。可是目前许多高校的应用物理专业的培养目标无法实现,其培养质量令人堪忧,其中最迫切最重要的是应该对应用物理专业课程体系进行大力合理改革,对其传统教学内容进行优化重整。
二、应用物理专业课程体系改革和教学内容的优化重整的必要性和紧迫性
2007年2月17日教育部下发了《教育部关于进一步深化本科教学改革全面提高教学质量的若干意见》。其中强调要深化教学内容改革,建立与经济社会发展相适应的课程体系,要根据经济社会发展和科技进步的需要,及时更新教学内容,将新知识、新理论和新技术充实到教学内容中,为学生提供符合时代需要的课程体系和教学内容。要采取各种措施,通过推进学分制、降低必修课比例、加选修课比例、减少课堂讲授时数等,增加学生自主学习的时间和空间,拓宽学生的知识面,提高学生的学习兴趣,完善学生的知识结构,促进学生个性发展。
目前的应用物理课程体系仍然主要由普通物理课程(包括力学、热学、电磁学、光学、原子物理学)、理论物理课程(包括理论力学、热力学与统计物理学、电动力学、量子力学)以及固体物理学构成。应用物理专业的学生经过高中物理、普通物理和理论物理的学习,发现许多课程内容重复出现,以至于相当一部分人认为没有多大差别,只是所用数学工具不同罢了,“高中用△,普物用d,理物用”,这充分反映了应用物理专业主干课程体系和教学内容存在的严重问题[2]。即当今的应用物理专业课程体系和教学内容仍没有跳出传统物理学专业和物理教育专业的框架,课程体系僵化,过分强调“系统化”、“逻辑化”,传统的基础和理论物理课程内容重复而陈旧、占用课时过多。没有体现物理世界的发展性,现代性、统一性以及各学科之间的内在联系、相互交叉、相互渗透。普遍存在“重经典、轻现代、重理论、轻应用”的弊端,反映现代科学和高新技术发展成果的课程和教学内容太少,应用物理专业的“应用”特色体现不明显,学生的科学素养、理论和实际相结合的能力较差,无法实现应用物理专业培养目标[3,4]。
“知识爆炸”时代,科学技术的发展日新月异,其在经济发展进程中的作用越来越大,同时也产生了许多新兴学科。教学内容和课程体系是人才培养目标、培养模式的载体,是教育思想和教育观念的直接体现,是提高人才培养效率和质量的决定性因素[5]。因此培养应用物理专业人才的教学内容和课程体系理应满足新时期科技、经济飞速发展对人才培养的需求,所以改革现有课程体系,优化整合教学内容,提高教学效益已势在必行,刻不容缓。
三、课程体系改革和教学内容优化整合原则
课程体系的设置和教学内容的选取要符合教学规律,符合学生的认知规律,由现象到本质,由简单到复杂,同时注意到自然界是普遍联系的,不人为割裂自然科学的内在联系,理论和原理是经典的,但应用要是现代的,按照“少而精”的原则,对传统教学内容实行量的精选、压缩与质的提高。对现有的普通物理(包括力学、热学、电磁学、原子物理学)和理论物理(包括理论力学、热力学与统计物理学、电动力学、量子力学)进行优化整合,绝不搞简单缩减,重新设置课程体系,并对课程开设顺序和时间做出科学合理的安排,同时注入现代化的教学内容,将近代物理和科技发展的最新成果纳入新的课程体系和教学内容,及时反映科学技术研究的新成果,使学生及时了解学科发展前沿的新成就、新观点、新动向。缩减传统课程门数及学时数,以便增开其它应用物理课程及学时数。
四、课程体系改革思路和优化整合的教学内容
1.力学和理论力学优化整合成力学理论。如今许多应用物理专业第一学期就开设普通物理课程力学,到第五或第六学期再开设理论力学,而理论力学前面相当大一部分是和力学内容重复的,如质点运动学、质点动力学、质点组运动学、质点组力学、刚体力学等内容重复量大,这不仅降低了学生学习新知识的兴趣,且浪费了很大一部分教学课时。同时力学课程要求采用微积分、矢量分析、微分方程等高等数学知识研究处理“变”的物理问题,这和学生刚开始接触高等数学知识相矛盾,教师在授课时不得不降低要求讲解,造成学生后续学习理论性强的理论力学的难度增大,教学效果降低。因此打破原有力学和理论力学界限,将它们优化重组成力学理论课程,删除牛顿力学重复部分,去除相对论部分,将这部分移到电磁理论中讲解,力学理论安排到大学第二学期开设,这时学生们的高等数学工具应用较为熟练,已具备了处理“变”问题的科学思维方法和能力,有利于教学质量的提高。精简、优化整合后的力学理论包括:质点力学、刚体力学、非惯性系力学、振动与波、连续体力学、虚功原理、拉格朗日方程、哈密顿正则方程、哈密顿原理、泊松括号与泊松定理、正则变换、哈密顿-雅可比理论、非线性力学简介。力学理论课程既包括牛顿力学,又包括分析力学,将研究力学问题的方法有机辩证地联系起来,物理概念清晰准确,理论体系简洁明了,兼顾了经典与现代、基础与前沿内容,为后续理论课程的学习构筑了桥梁和基础。
2.热学和热力学与统计物理学优化整合成热物理学。据统计,热力学与统计物理学中的热力学部分和统计物理学部分分别占总内容的46%和54%。热学课程中的热力学定律部分和热力学与统计物理学中热力学部分内容(温度与平衡态、物态方程、热力学第一定律、功、热容量与焓、理想气体、热力学第二定律、熵、卡诺定理等)重复率高达1/3[6]。在分子动理论和经典统计部分也有重复,如麦克斯韦速率分布律和速度分布律、玻耳兹曼分布律、能量按自由度均分定理、气体内的输运过程,所以将热力学部分与热学中的重复部分删除,将这两门课程进行优化整合,可以缩减约1/3的课时。优化整合的主要思想是贯穿从宏观到微观,从单个质点到大数量粒子构成的系统这一线索。在热学部分介绍经典热学、热学最新动态、热学在新科技中的应用,统计物理学部分以系综理论为主线,融宏观与微观理论于一体,立足于微观量子理论,从等几率原理出发,循序渐进地阐明统计物理学理论,运用统计物理学理论导出热力学基本定律,将统计物理学概念与宏观热现象相联系和对应,实现热现象的宏观理论与微观理论的有机融合。优化整合后的热物理学内容包括:热力学第零定律与温度、状态方程、气体分子运动论的基本概念、气体分子热运动速率和能量的统计分布率、气体输运过程、功、热量、热力学第一定律与内能、热力学第二定律与熵、固体和液体、相变、统计物理学基本原理、孤立系统、封闭系统、热力学函数及其应用、气体性质、开放系统、量子统计理论、涨落理论、非平衡态统计物理。
3.电磁学和电动力学优化整合为电磁理论。电磁学和电动力学都是研究电磁场基本性质、运动规律及其与带电物质之间的相互作用。电磁学侧重于电磁现象的实验研究,从对电磁现象的研究中归纳出电磁学的基本规律,而电动力学侧重于理论研究,以麦克斯韦方程组和洛伦兹力为基础,研究静态、时变态条件下电磁场的空间分布和运动变化规律,以及带电粒子与电磁场的相互作用等问题。考虑到电磁学与电动力学在内容上是相互统一,相互渗透的,可以将它们优化整合成电磁理论课程,将电磁学与电动力学的内容适当贯通,既分层次,又平滑过渡,避免不必要的重复。具体如下:由库仑定律引出电场、电场强度的定义,电通量、高斯定理及场强的计算,由电场力作功的特点引出环路定理、电势、电势的计算;由毕奥-萨伐尔定律引出稳恒磁场的计算、环流和旋度、散度;由电场强度与电势的关系引出真空中的泊松方程与拉普拉斯方程;介绍介质的电磁性质、场与介质的相互作用、静电场边值关系与唯一性定理,运用泊松方程与拉普拉斯方程计算真空与介质中的场强与电荷分布,介绍静电场分离变量法、镜像法;由稳恒电流导出静磁场,由电场中的标势引出矢势、磁标势;对电磁感应、麦克斯韦方程组、电磁波辐射与传播、狭义相对论均单独设章节介绍。对超导、等离子体、巨磁电阻等做简要介绍,丰富理论与实际应用的联系,电路和交流电内容放电工学课程中讲解。
4.原子物理学和量子力学优化整合为近代物理学。原子物理学侧重于原子光谱实验现象的解释、物理思想和物理模型的建立,量子力学是在对原子光谱研究的基础上发展建立起来的理论体系,侧重于微观本质,理论性强。原子物理学的实验研究促进量子力学的不断发展,它们联系紧密,相互促进,其研究对象存在重复,导致目前许多原子物理学教材中的量子力学导论部分内容和量子力学教材存在大量重复,如玻尔氢原子理论、波粒二象性、不确定性原理、波函数及其统计解释、薛定谔方程、平均值计算、氢原子薛定谔方程解、康普顿散射效应、碱金属原子光谱精细结构、塞曼效应等。因此必须对这两门课程进行优化整合,形成新的知识结构体系,其思路是:通过对原子现象的发掘,引出其量子力学的理论本质,同时通过量子力学理论的建立和运用,来研究原子等微观体系的特性。优化整合后的基本内容为:经典物理遇到的困难、玻尔氢原子理论、状态与薛定谔方程、力学量与算符、中心力场、电磁场中粒子的运动、矩阵力学、微扰理论、电子自旋、多电子原子、外场中的原子、多体问题、分子结构和能谱、散射。这样优化整合后课程所需学时会比优化整合前大大减少。
五、整合后专业课程的开设时间安排
根据学生的认知特点和规律、应用物理专业课程之间的关联,优化整合后的课程开设顺序可以这样安排:大学一年级注重增加高等数学教学课时,将高等数学进度尽量前推,大学第二学期开设力学理论、第三学期开设光学和电磁理论,同时开设数学物理方法为后续课程做好准备,第四学期开设近代物理学,第五(或四)学期开设热物理。这样的调整安排能留出更多时间来开设其他应用物理专业课程,有利于学生的就业或继续深造。
六、教学改革的预期效果
1.重构应用物理主干课程体系,避免了基础课程和理论课程教学内容的重复,优化教学内容,缩减课程科目,节省大量课时,将会大大提高教学效率。为应用物理课程的开设、选修课的开设及学生的个性化发展提供了时间条件,突出了应用物理、技术课程的地位和专业特色。
2.为应用物理培养目标的实现,培养合格的应用物理人才提供了可靠保障,课程体系的改革和教学内容的优化重整适应和满足社会发展和科技前沿的需求。教学内容富有现代性,开放性,渗透新的教学内容和思想,使应用物理专业学生在理论与实践技术方面具有复合型的知识结构,为他们今后的创新发展提供坚实基础。
参考文献:
[1]王蜀霞,王新强.应用物理专业课程体系改革实践[J].重庆大学学报(社会科学版),2001,7(05).
[2]陈波.应用物理学专业《热学》与《热力学与统计物理》课程整合之初探[J].中山大学学报论丛,2004,24(01).
[3]富笑男,刘琨.应用物理学专业人才培养模式的探索与实践[J].郑州航空工业管理学院学报(社会科学版),2009,28(04).
[4]石东平,龙晓霞,程正富,代武春,杨守良.物理学专业应用型人才培养课程体系改革探索与研究[J].重庆文理学院学报(自然科学版),2009,28(06).
[5]陈波.应用物理专业物理类基础课的课程体系改革之探讨[J].中山大学学报论丛,2004,24(03).
[6]苏安.“热学”与“热力学统计物理”课程整合探索[J].教育与职业,2008,(09).
基金项目:中南大学第七批教学改革暨课程体系改革专题项目