APP下载

分数、百分数应用题教学策略

2013-04-10霍雷

实践新课程 2013年4期
关键词:名山等量语句

霍雷

以往教师在教学分数、百分数应用题教学时,总是让学生牢记三步:第一步 找单位“1”,判断单位“1”是已知还是未知的;第二步单位“1”已知用乘法,单位“1”未知用除法;第三步列式解答。虽然这样学生能把基本题型做对,也做得较快,但是学生只是死记硬背模式,而不懂算理,也不懂单位1是已知为什么用乘法,未知的用除法,学生思维能力没有得到发展,并且遇到稍复杂的应用题或变形题时就不会解答了,这种教学方法缺少对学生的解决问题能力的培养。而新课标要求:“运用数学的思维方式进行思考,增强发现问题和提出问题的能力、分析问题和解决问题的能力。”那么怎样才能既要学生会做,又能培养学生能力,兼顾两者呢?

经过多年教学探索和研究,我发现在分数和百分数应用题教学时采用4+1解题法,学生解题时不仅会做基本题型,还会做复杂的题型,而且学生既理解算理又能提高学生解题能力,训练学生思维,一举两得。

4+1解题法中4是指4个步骤:

第一步,划出题中的关键语句。关键语句是指带有分率或百分数的语句,或表示两者关系的语句:如一班人数是二班的2/5或40%、比计划多3/4或75%、修了5/8或62.5%;一班和二班一共有80人或名山图片比河流图片多30张等,有几句划几句,培养学生寻找解决问题的突破口。

第二步,把找到的关键语句转化成谁是谁的几分之几或百分之几,这样就把关键语句转化成分数或百分数的乘法意义,便于学生理解。如一班人数是二班的2/5或40%就不用转化了,而比计划多3/4或75%就要让学生用语言或文字转化成:现在是计划的(1+3/4或1+75%);修了5/8或62.5%转化成已经修的是全路程的5/8或62.5%等。把转化后的语句写在这句话的上面,把新旧知识进行联系,从而培养学生转化和迁移的能力。

第三步,根据第二步的转化语句和表示两者关系的语句,让学生利用分数或百分数的意义列出等量关系。如一班人数是二班的2/5或40%,学生列的等量关系是:二班X2/5=一班人数;根据现在是计划的(1+3/4或1+75%)列成等量关系计划X(1+3/4)=现在;根据已经修的是全路程的5/8或62.5%列成等量关系:全路程X62.5%=已经修的。因为上面的语句都是分数或百分数的意义应用,所以,学生很容易利用意义列出等量关系式。对于表示两者关系的语句:一班和二班一共有80人,学生利用已有的知识很快也能列出等量关系:一班+二班=80;名山图片比河流图片多30张学生会列出:名山图片-河流图片=30。这样学生不仅会列等量关系还理解了算理,有利于学生思维的发展和能力的提高。

第四步:根据上面的等量关系让学生代入已知数据列式,学生很容易列出算术方法或方程方法来解题,培养学生等量代换的意识。

当题中出现多个关键语句时,学生找出的等量关系也是多个的,这时在利用等量关系进行列式时,会出现无论用算术方法或方程方法都无法解决。这时就要用上4+1解题法中的+1这一步:+1这步主要引导学生把多个等量关系进行等量代换式的合并,从而组成一个新的等量关系,这时再解答即可。比如书上第29页练一练第一题:淘气和笑笑收集图片,收集的名山图片占60%,河流图片占30%,名山图片比河流图片多30张,一共收集了多少张图片?学生按上面步骤很轻易找出等量关系:全部图片X60%=名山图片、全部图片X30%=河流图片、名山图片-河流图片=30。但在学生利用第四步列式时出现问题,不管学生往哪个等量关系中代入已知数据时,发现没数据可代入或都列不出式子。这时引导学生找出这几个等量关系的相同点,利用相同点进行等式的合并,上面三个等量关系可合并成:全部图片X60%-全部图片X30%=30,学生会很快地用方程解答出此题。

4+1解题法是在学生审题后,学生独立解题的方法。这种方法的前提是在学生熟练掌握分数和百分数的意义基础上进行教学。教学初期要持之以恒,多请学生说,把步骤先写出来再解答。刚开始学生会很慢,掌握后会越来越来快、准,学生的思维能力和解题能力提高得很快,为以后的学习打下基础。

(作者单位:长春市南关区西三小学)

责编/齐鲁青

猜你喜欢

名山等量语句
一道等量约束关系下的不等式证明探究之旅
视野中的名山
趣味谜语·每行打一中医用语
哈哈果熟了
找准等量关系巧列方程解决问题
多角度寻找等量关系
川贵寻茶
邮票上的世界名山
基本算法语句
我喜欢