槽式太阳能聚光器结构特性研究
2013-04-09刘英玉肖洪朱天宇
刘英玉,肖洪,朱天宇
(河海大学 机电工程学院,江苏 常州 213022)
0 引言
太阳能作为一种新能源其利用形式主要有三种:光—热转换、光—电转换、光—化学转换。其中以光—热转换为主的槽式太阳能电站已经是技术发展最为成熟的一种,目前槽式太阳能热发电系统是唯一可以实现商业化运作的系统,其投资成本相对较低,在白天用电高峰时可以提供稳定的电能。因此,槽式太阳能热发电系统的发展必将具有十分广阔的前景。
西方国家对太阳能的利用较早,在1985~1991 年间美国鲁兹公司先后建立了9 座槽式太阳能热发电站,总装机容量达到了354 MW。其中最为典型的是80 MW 装机容量的SEGSVII 电站,主要特征为:槽式抛物面反射镜东西放置,采用单轴跟踪技术。真空管集热器的直径为70 mm的不锈钢管装在直径为115 mm 的圆柱形玻璃套内。不锈钢管外壁涂有高温选择性吸收涂层,玻璃管内抽成真空,以减少热量的流失。南京春晖科技实业有限公司和河海大学新材料新能源开发研究所联合组成攻关小组,在太阳能热发电领域的槽式抛物面反射镜、槽式太阳能接收器研究方面取得了一定的进展。
为了实现槽式太阳能热发电站的进一步推广与应用,需要进一步降低发电成本,提高太阳能利用率。因此,需要对聚光器的聚光比与支架的变形进行研究,通过研究支架变形前后与聚光比的关系,提出支架优化结构形式。目前国内外许多学者对支架的结构进行了研究与优化,Schlaich 等人开发了新一代的槽式抛物面聚光器,对聚光器进行了优化设计,设计后的支架零件数量较少,质量减轻。Solargenix 公司开发了全铝框架的槽式抛物面太阳能聚光器。重庆大学机械传动国家重点实验室对聚光器的结构进行了优化,并测试了聚光器在不同条件下的运行数据,支架优化后的质量明显减轻。南京工业大学机械与动力学院模拟了支架在不同风速、不同角度下的运行结果,并对优化后的聚光特性进行了分析。帅永等运用蒙特卡洛射线法研究了槽式和碟式两种抛物面集热器的焦距、边界角之间的关系;yang 等应用蒙特卡罗光线追踪法模拟了抛物面槽式系统的聚光特性,获得了较高的精度。
1 槽式太阳能热发电系统简介
槽式太阳能热发电站由六大子系统组成分别是:太阳辐射热能采集系统(镜场)、热交换系统、补充能源系统、汽轮机系统、发电机系统和输配电系统。其中太阳辐射热能采集系统由支架、反光镜、集热器等组成。聚光器占整个槽式太阳能热发电的发电成本的40%以上,因此,降低发电成本成了当务之急,其中有效途径之一就是采用合理的聚光系统。聚光系统应使用合理的支架结构形式,有效控制反射镜面和支架的变形,提高太阳能辐射的利用率,这将对降低聚光槽式热发电的成本有着十分重要的意义。
由于太阳辐射的能量密度较低,要想得到较高的集热温度,必须通过聚光手段来实现。槽式太阳能热发电聚光器,将太阳光汇聚形成高能量密度的光束。首先太阳光经镜面反射到集热器上,通过集热器加热管内的传热工质(油或者水),被加热的工质通过热交换器产生过热蒸汽,过热蒸汽推动汽轮机发电(图1)。
图1 槽式太阳能热发电系统原理框图
目前在聚光器中主要使用的支架形式有扭矩盒式支架、扭管式支架和间隙式。扭矩盒式支架的核心部分是底部的一个盒子状的结构,用来给抛物面镜的悬臂提供支撑。扭矩盒式支架制作简单、安装方便、质量较轻、变形较小,能够承载静负载和风载的能力(支架结构如图2 所示)。在工作过程中降低了支架结构的弯曲变形,从而具有较高的光学性能。
图2 槽式太阳能聚光支架
2 槽形抛物面聚光器
抛物线是唯一可将平行光聚焦于一点的型线。槽形抛物面的光孔就是槽的开口宽度,其大小决定了聚光器输入的总能量,其焦距的距离决定了太阳像的大小,在聚光系统的焦平面上,像的能量密度和光孔宽度以及焦距大小密切相关。抛物面聚光器的聚光比,主要决定于相对光孔,并与接收器的形状也有一定关系。
几何聚光比表示聚光接收器接收的阳光开口面积与吸热管表面积的比值。太阳辐射经光孔进入聚光器,由反射面将其聚焦到接收器。一般来说聚光器的聚光比越高,则聚焦中心达到的最高温度就越高。
槽形抛物面聚光器光孔宽度设为b,槽长为l,聚光集热器的即热效率为η,单台集热器可获得的有用能量收益为q(图3)。则:
图3 槽式真空集热器截面示意图
其中:I 为太阳直射辐射强度(kW/m2),bl 为抛物面聚光器的光孔面积。
能量聚光比是聚焦到接收器上的平均太阳辐射能对入射太阳辐射能的比值。若投射到光孔上的入射太阳辐射能为I,由于镜面存在误差,导致最终汇聚到接收器上的平均太阳辐射能降低为IR。
式中:CE为能量聚光比,I 为投射到光孔上的入射太阳辐射能,IR为最终汇聚到接收器上的平均太阳辐射能。
理想聚光器聚光比的公式为:
式中:Aa为光孔面积,Ar为接收器的面积;
若令光孔面积Aa →∞,接收器的面积Ar →0,则有C→∞。
聚光器光孔的半采光角为Ф,则聚光器的最大采光角为2Фmax,在该角度内投射到光孔上的太阳辐射,能够完全被接收器接收。即聚光器线聚焦的最大聚光比为
3 矩形扭矩盒式聚光器支架受力分析
随着槽式太阳能热发电的商业运行,各国都意识到太阳能聚光器对太阳辐射利用的重要性,对太阳能聚光技术进行了研究,研究人员对支架的结构进行了改进。20 世纪90 年代,Schlaich 等人开发了抛物槽式聚光器,该聚光器在结构上增加了矩形扭矩盒。扭矩盒是通过焊接和螺钉连接起来的金属结构,中间有一个正方形十字交叉部件,这种支架零件数量较少,安装维护方便。
聚光器是太阳能热发电系统中的关键部分,反射镜安装在支架上,入射光经反射镜反射后到达接收器。反射镜的安装直接影响太阳能的利用率,因此,支架在运行过程中要有足够的刚度和良好的抗疲劳能力;支架质量尽量减轻传动容易、能耗小制造成本低,能够长期稳定运行。
支架设计要求为:1)正常工作最大风速为6 级风,可抵御8 级风;2)在有相关措施的情况下,10 级风以下具有不损坏反射镜的功能;3)支架在自重和风载的条件下变形要小。
表1 优化前、后槽式集热器主要结构参数
通过对支架的分析从图4 可以看到,支架的应力主要集中在两边的斜支撑上面,特别是在支架的端部。从图5可以看出支架由于承受自身质量和外载荷、风载等,支架变形明显,支架端部变形位移较大,结合表1 从结构参数可以看出支架变形后严重影响了聚光器的聚光比。图6对支架的一些参数进行了敏感度分析,从图中可以看出,该参数对支架的影响为线性关系,图7 是单个支架的结构示意图。从表1 可以看出优化后的支架聚光比变大,开口宽度变大,焦距变小。这都有利于提高支架的聚光比,符合支架优化的要求。
4 反射式聚光器设计
槽型抛物面聚光器的焦距尺寸决定了聚光器的焦线位置,由此决定了抛物面的加工型线,接收器为圆管的槽形抛物面聚光集热器,其集热管存在一个最佳直径尺寸(Dmin),能够完全接收来自反射镜的反射光线。如果集热管的直径D<Dmin,则会出现漏光现象,即集热管只能接收到一部分太阳反射光。
理想光学系统,在镜面没有加工误差和跟踪系统准确的情况下,求太阳反射光线完全落到接收器上的平均光线长度,
对式(4)进行积分运算求的平均光迹长度。
式中,m 为聚光器的相对光孔宽度,f 为聚光器的焦距,对式(5)是进行求导得当m=4√3 时聚光器的最大采光角为φmax=120o,这表明抛物面的焦点落在聚光器光孔平面以内。
聚光太阳能集热器有聚光器和接收器组成。聚光器一般由反射镜或透镜组成,主要有抛物面式反射镜、菲涅尔式透镜、菲涅尔式反射镜等。聚光器主要有圆形接收器和抛物槽式聚光器等,其中抛物槽接收器已经在电站实际应用。
槽型抛物面聚光器,太阳辐射从镜面顶点和镜面边缘点(xn,yn)反射出去的光线到达焦点出的尺寸分别为W和W/.从镜面顶点到边缘点的全部镜面反射辐射均可落到接收器上,接收器的长短轴分别为:
式中:W/和W 分别为聚光器的长轴和短轴,xn为镜面边缘上的一点,f 为聚光器的焦距,δs为圆面张角,θ 为边界角。
当W/>W 在满足上述条件时,太阳光从各个点反射出去的光线完全能够落在抛物面接收器上的条件下,槽式抛物面聚光集热器集热管的形状可以为圆形、椭圆形和橄榄形。
5 结论
1)优化后支架的焦距明显变小,开口宽度变大,采光口面积变大,聚光比增大,提高了太阳辐射的利用率。支架变形更小,为进一步分析聚光器的光学性能分析提供了条件。2)通过对支架进行优化,支架的材料减少,同时满足了支架的强度和刚度要求,使支架更容易运输、安装维护。3)支架变形后,开口宽度变大,焦距变小,可能会发生反射光有一部分被集热光吸收,有一部分偏出,可以通过对优化后支架的开口宽度与焦距重新设计集热管的直径,使设计的集热管能够完全接受来自反射镜的光线,从而充分利用了太阳能辐射。
[1]陈于平.聚光太阳能发电技术应用与前景[J].重庆三峡水利电力集团,2010,(07).
[2]熊亚选,吴玉庭,马重芳.槽式太阳能聚光集热技术[J].北京工业大学学报,2009,(06).
[3]杨谋存.抛物槽式聚光器结构与光学分析[J].南京工业大学学报,2010,(08).
[4]陈小安.槽式太阳能聚光器结构优化及新型定日镜两轴跟踪精密传动箱[J].重庆大学学报,2010,(8).
[5]安翠翠.抛物槽集热器的研究[J].河海大学学报,2008,(05).
[6]王军,张耀明,张文进,等.太阳能热发电系列文章(10)槽式太阳能热发电中的聚光集热器[J].河海大学学报,南京中材天成新能源有限公司,2007,(04).
[7]韦彪,朱天宇.槽式太阳能集热器的传热特性研究[J].河海大学,动力工程学报,2011,(05).
[8]徐显波.抛物槽式太阳能集热系统的应用与研究[J].兰州理工大学学报,2010,(05).
[9]安翠翠,张耀明,王军,等.国际主要槽式太阳能热发电介绍[J].河海大学学报,南京中材天成新能源有限公司,2007,(04).