创伤弧菌控制措施与风险评估的研究进展*
2013-04-09姬华陈艳刘秀梅付萍李志刚李敬光
姬华,陈艳,刘秀梅,付萍,李志刚,李敬光
1(国家食品安全风险评估中心,卫生部食品安全风险评估重点实验室,北京,100021)2(江南大学食品学院,江苏无锡214122) 3(石河子大学食品学院,新疆石河子,832000)
创伤弧菌(Vibrio vulnificus,简称Vv)是一种低度嗜盐菌,属于弧菌科(Vibrionaceae)弧菌属(Vibrio)。创伤弧菌为革兰氏阴性细菌,有动力,单独存在,或尾端相连成“C”或“S”型,该菌适于生长在碱性环境中,对酸性环境敏感。Roland于1970年首先报道由创伤弧菌感染引起的小腿坏疽和内毒素性休克,Hollis等于1976年从血液中分离培养创伤弧菌,该菌于1979年被命名为Vibrio vulnificus[1]。随后,美国、日本相继报告创伤弧菌感染临床病例,姜红于1991年报道了我国首例创伤弧菌引起的原发性败血症[2]。
创伤弧菌引起的疾病潜伏期一般在24~28 h。单独引起胃肠炎的病例较少。胃肠炎主要表现为腹痛、腹泻(呈水样便)、恶心、呕吐,多无发热。罹患肝病的个体及免疫功能低下者,一旦感染创伤弧菌,更容易发生致命的伤口感染和原发性败血症,原发性败血症的病死率超过50%[3]。创伤弧菌分为3种类型:吲哚阳性的生物Ⅰ型对人类致病,吲哚阴性的生物Ⅱ型对人类和鳗鱼致病,1996年从以色列病人分离的创伤弧菌为生物Ⅲ型菌株。
1 创伤弧菌的控制措施
1.1 温度和盐度
创伤弧菌是一种嗜温菌,水温在20~30℃,菌量较高。温暖水域中创伤弧菌的浓度显著高于寒冷水域中创伤弧菌的浓度。创伤弧菌的最适生长温度为37℃,当水温低于20℃,创伤弧菌在自然水域环境中的种群浓度很低,创伤弧菌最低生长温度为13℃[4-6]。创伤弧菌种群数量高峰出现在夏季,人群患病率呈季节性变化,疾病多发在夏秋高温季节[7]。虽然创伤弧菌嗜温,但对50℃以上的温度却非常敏感。利用创伤弧菌的生长特性,可以通过冷藏、冷冻、低中温巴氏杀菌等措施有效降低海产品中创伤弧菌的风险。
不同生理亚种和形态的创伤弧菌对温度变化的适应性也各不相同,Watanabe等[8]研究发现,25℃条件下,创伤弧菌生物Ⅰ型、生物Ⅱ型和鳗弧菌(Vibrio anguillarum)在肉汤中繁殖并分泌大量金属蛋白酶。
37℃肉汤培养,创伤弧菌生物Ⅰ型和生物Ⅱ型生长并且分泌金属蛋白酶,鳗弧菌不生长也不产生金属蛋白酶;在人类血浆中,只有创伤弧菌生物Ⅰ型稳定繁殖并产生胞外金属蛋白酶,表明生物Ⅰ型的生长能力与人类系统性疾病密切相关。创伤弧菌生物Ⅱ型能利用水体作为感染路径。在5~25℃条件下,创伤弧菌Ⅱ型能在人工海水中存活50 d。当暴露在5℃低温下进入活的非可培养状态(VBNC,Viable but non-culture)。从5℃增加到25℃后,生物Ⅱ型细胞在固体培养基上恢复培养,恢复培养的细胞对鳗鱼和小鼠具有感染性,而休眠的细胞失去了毒力[9]。
Dombroski等[10]使用选择性培养基从野生型(Vv-WT)中选择培育了1株抗萘啶酸的创伤弧菌菌株(Vv-NA)。在-20℃、-80℃、液氮条件下,Vv-NA和Vv-WT具有相同的失活曲线。47~52℃热处理,二者的D值几乎一样。不透明菌株细胞外层具有荚膜,而透明菌株没有荚膜。Kim等[11]发现不透明创伤弧菌的Z值(2.4~2.5℃)显著高于透明菌株的Z值(1.7~2.1℃),说明荚膜对细菌具有保护作用,提高了细菌的耐热性。除了荚膜的保护作用,过氧化氢酶也能对创伤弧菌起到保护作用,提高VBNC细胞的复苏率[12]。
低温热处理已成为北美地区水产品加工的重要辅助方式。Cook等[13]发现低温巴氏杀菌(50℃,10 min)能使去壳牡蛎中的创伤弧菌从105 MPN/g下降至检测不到的水平;50℃处理牡蛎15 min,能彻底杀死创伤弧菌;用冰贮藏的牡蛎中创伤弧菌降低到2个对数级,但不能彻底杀死腐败菌[14]。水温67℃保持约5 min,牡蛎中的创伤弧菌降低2~4个对数级[15]。牡蛎匀浆中的创伤弧菌比缓冲液中的创伤弧菌更耐热,可能是由于海产品蛋白对创伤弧菌的保护作用[16]。但是 Ruple等[17]认为,商业热处理并不能有效的控制牡蛎中的创伤弧菌,推荐使用冷藏牡蛎以延长货架期,减少创伤弧菌的危害。
冷藏与冷冻只能降低创伤弧菌的数量,抑制创伤弧菌的生长,却不能彻底杀死创伤弧菌。Cook[4]发现低于13℃,创伤弧菌在牡蛎中不繁殖,18℃贮存条件下创伤弧菌生长速率低于室温条件(23~34℃)的生长速率。创伤弧菌注入去壳的太平洋牡蛎和东欧牡蛎,4℃下至少存活6 d,冷藏处理贝类和去壳牡蛎中残存的创伤弧菌仍具有潜在的致病力[18]。创伤弧菌在冷藏或冷冻处理过程中还具有一个冷适应过程。从15℃放至-78℃冷冻的细胞比从35℃放至-78℃冷冻的细胞更易于培养。冷适应与“保护”蛋白的表达有关,培养基中除去铁,创伤弧菌比同温度条件培养下降了2个对数级,说明低温条件下铁对创伤弧菌起到重要的保护作用[19]。恢复培养时,创伤弧菌平板涂布培养比倾注培养具有更高的恢复性。加入丙酮酸钠或过氧化氢酶提高了VBNC细胞在5℃低温条件下的复苏率和存活率;缺乏营养素培养创伤弧菌能够提高其冷抗性和热抗性[20-21]。
创伤弧菌存在于盐度为0.08%~3.50% 的水体中[22]。Kaspar等[5]发现盐度过高不利于创伤弧菌生长,创伤弧菌生长的最适盐度为0.5% ~2.5%,当盐度为3.0%、3.5%、3.8%,创伤弧菌的浓度分别下降58%、88%和 83%。Motes等[6]发现,盐度超过 2.8%,则创伤弧菌浓度降低。温度和盐度显著影响创伤弧菌生物Ⅱ型的生长;创伤弧菌生物Ⅱ型的最佳生长盐度为1.5%;盐度降低,存活率较低;最佳生长温度取决于盐度,25℃条件下该菌生长的最低盐度范围在0.3%~0.5%,12℃条件下该菌生长的最低盐度范围在1.5% ~3.8%[23]。
1.2 超高压和辐照
创伤弧菌对压力非常敏感,在25℃条件下,250 MPa处理10 min,肉汤中的创伤弧菌下降至检测不到的水平,VBNC细胞似乎更能抵抗超高压的致死作用[24]。Weibull方程适于预测超高压灭活弧菌,而费米方程更适于预测辐照灭活弧菌[25-26]。
创伤弧菌对辐照非常敏感。Mallett等[27]发现0.1 kGy的辐照剂量能杀死霍乱弧菌(Vibrio cholerae)和创伤弧菌。Mahmoud[28]利用 0.75、1.0、3.0 KGy X射线处理牡蛎,牡蛎中创伤弧菌下降超过6个对数级,牡蛎的感官质量没有发生变化。Andrews等[29]发现1.0 kGy的辐照剂量能使染菌带壳牡蛎中的创伤弧菌(107个/g)下降至检测不到的水平。
1.3 体外和体内模拟环境
牡蛎体内存在抗菌物质,而噬菌体也能有效降低创伤弧菌的数量[30]。3种创伤弧菌和噬菌体在37℃时暴露于模拟胃液中,研究发现创伤弧菌和噬菌体在胃酸条件下存活,而在小肠中繁殖,对胆盐具有抗性[31]。Wong 等[32]探讨了热、酸、胆汁和低盐对创伤弧菌YJ03的交叉保护作用。结果表明,酸(pH值4.4)、热(41℃)对创伤弧菌没有交叉保护作用。适应低盐(0.12%NaCl)的创伤弧菌细胞对12%的胆汁具有抗性。Paludan-Muller等[33]研究发现当缺少碳或磷时,创伤弧菌通过合成独特的蛋白在低温下存活。当缺少氮时创伤弧菌在低温下不能培养。
1.4 食品添加剂
采用壳聚糖处理牡蛎中的金黄色葡萄球菌(Staphylococcus aureus)、鼠伤寒沙门氏菌(Salmonella typhimurium)和创伤弧菌,结果表明壳聚糖能有效抑制金黄色葡萄球菌,但对鼠伤寒沙门氏菌和创伤弧菌没有明显的抑制作用[34]。创伤弧菌对含酚类物质的烟熏剂和大多数化学杀菌剂也很敏感[35-36]。0.05%双乙酰处理牡蛎使创伤弧菌下降2个对数级,而0.05%乳酸和丁基羟基茴香醚对创伤弧菌没有作用,双乙酰杀菌机理在于影响细菌细胞膜的渗透性及膜脂质层形成[37-38]。
1.5 净化和电离水
温度影响净化的效果,净化海水的温度高于23℃,牡蛎中创伤弧菌数量明显增加;当净化海水保持15℃时,海水和牡蛎组织均未检出创伤弧菌[39]。Groubert等[40]将创伤弧菌菌株(CVD713)接种牡蛎,净化48 h,创伤弧菌下降至检测不到的水平。延长净化时间(17~49 d)、保持高盐度(>3%)可以使创伤弧菌降低2~3个对数级。一般认为净化不能彻底清除海产品中的创伤弧菌[41]。
比起净化稀释细菌浓度的作用,电离水更能有效地抑制牡蛎中副溶血性弧菌(Vibrio parahaemolyticus)和创伤弧菌的生长。用含盐0.5%的电离水中处理副溶血性弧菌(8.74×107个/mL)和创伤弧菌(8.69×107个/mL)15 s后,两种弧菌下降至检测不到的水平。为了避免牡蛎死亡,电离水的处理时间最好限制在 4 ~6 h[42]。
2 创伤弧菌的风险评估
欧盟在食品卫生法典委员会第33届会议上提议开展创伤弧菌—牡蛎组合的风险评估[43]。McCoubrey[44]报道了生食北岛牡蛎的创伤弧菌感染风险,指出高盐等环境条件不利于创伤弧菌的生存。欧盟家畜公共卫生措施科学委员会完成了生食和半生食海产品中创伤弧菌和副溶血性弧菌的报告。该报告遵循风险评估模式,注意到全球创伤弧菌污染率的变化[45]。
世界卫生组织和联合国粮农组织对美国墨西哥湾生食牡蛎中的创伤弧菌进行定量风险评估。收获牡蛎中创伤弧菌的污染水平主要受水温和盐度的影响。对于盐度低于3%水域收获的牡蛎,估计夏季创伤弧菌污染水平最高(5.6×103CFU/g),冬季最低(8.0×101CFU/g)。风险评估模型估计采后贮藏期间创伤弧菌污染水平将会大幅增加,预测夏季平均水平为5.7×104CFU/g,冬季为8.0×101CFU/g。如果食用196 g牡蛎肉,估计夏季摄入创伤弧菌的剂量为1.1 ×107CFU/g,冬季为1.6×104CFU/g。采用贝塔-泊松剂量反应模型,估计在目前的收获和贮藏条件下,冬、春、夏、秋季创伤弧菌感染病例分别为0.5、11.7、12.2、8.0 例。如果创伤弧菌污染水平降至300、30、3 CFU/g,估计全年病例数分别为 7.7、1.2、0.16 例[46]。
国家食品安全风险评估中心开展对虾中创伤弧菌风险评估研究,构建对虾中创伤弧菌的定量风险评估模型[47]。该模型模拟了从零售到餐桌,由于消费对虾引起创伤弧菌感染的风险。模型估计了污染创伤弧菌的对虾数量,经过购买、运输、贮存、制备等步骤后对虾中创伤弧菌菌量的增减。通过剂量反应关系模型计算我国因食用污染创伤弧菌的对虾引起创伤弧菌疾病的概率。食用含有创伤弧菌的对虾所引起的疾病感染概率为1.977×10-5,即每百万人有19.8人发病。模型估计的人群创伤弧菌发病率与美国、日本和韩国报道的人群发病率非常接近。敏感性分析发现,购买对虾后的家庭常温贮藏时间与对虾中创伤弧菌的初始污染浓度对风险的影响较大。通过改变参数,模型评估了几种风险控制措施的效果,如中温处理、超高压处理、缩短购买对虾后的家庭常温贮藏时间和降低零售阶段对虾中创伤弧菌的初始浓度。研究结果提示监管部门有必要增加对虾等海产品的创伤弧菌监测指标,以便为相关部门制定风险管理措施提供科学依据。
3 展望
相比于其他的弧菌和食源性病原体,创伤弧菌对食品加工中许多常用的杀菌措施都极为敏感。净化措施对于清除创伤弧菌的作用不大,因为细菌存在于海产品的不同组织中。创伤弧菌属于低度嗜盐菌,高盐不利于创伤弧菌的生长。国内外对创伤弧菌生长和存活的数学建模研究还不够深入,大多数研究仅仅探讨杀灭创伤弧菌的D值和Z值。深入研究细菌生长特征,建立数学模型,改变加工、贮藏参数以控制食品中创伤弧菌的生长,对于有效控制创伤弧菌污染,完善海产品中创伤弧菌的风险管理措施非常重要。
[1] Blake P A,Weaver R E,Hollis D G.Diseases of human(other than cholera)caused by vibrios[J].Annu Rev Microbiol,1980,34:341 -367.
[2] 姜红.原发性创伤弧菌败血症一例[J].中华内科杂志,1991,30(10):645 -646.
[3] 陈艳,付萍.创伤弧菌检测方法的研究进展[J].国外医学卫生学分册,2008,35(2):91 -96.
[4] Cook D W.Effect of time and temperature on multiplication of Vibrio vulnificus in postharvest Gulf Coast shellstock oysters[J].Appl Environ Microbiol,1994,60(9):3 483-3 484.
[5] Kaspar C W,Tamplin M L.Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish [J].Appl Environ Microbiol,1993,59(8):2 425-2 429.
[6] Motes M L,DePaola A,Cook D W,et al.Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters(Crassostrea virginica)[J].Appl Environ Microbiol,1998,64(4):1 459 -1 465.
[7] Strom M S,Paranjpye R N.Epidemiology and pathogenesis of Vibrio vulnificus[J].Microb Infect,2000,2(2):177-188.
[8] Watanabe H,Miyoshi S,Kawase T,et al.High growing ability of Vibrio vulnificus biotype 1 is essential for production of a toxic metalloprotease causing systemic diseases in humans[J].Microb Pathog,2004,36(3):117 -123.
[9] Biosca E G,Amaro C,Marco-Noales E,et al.Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2[J].Appl Environ Microbiol,1996,62(2):450-455.
[10] Dombroski C S,Jaykus L A,Green D P,et al.Use of mutant strain for evaluating processing strategies to inactivate Vibrio vulnificus in oysters[J].J Food Prot,1999,62(6):592-600.
[11] Kim C M,Jeong K C,Rhee J H,et al.Thermal-death times of opaque and translucent morphotypes of Vibrio vulnificus[J].Appl Environ Microbiol,1997,63(8):3 308-3 310.
[12] Johnston M D,Brown M H.An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing[J].J Appl Microbiol,2002,92(6):1 066-1 077.
[13]Cook D W,Ruple A D.Cold storage and mild heat treatment as processing aids to reduce the numbers of Vibrio vulnificus in raw oysters [J].J Food Prot,1992,55(12):985-989.
[14] Andrews L S,Park D L,Chen Y P.Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters[J].Food Addit Contam,2000,17(9):787-791.
[15] Hesselman D M,Motes M L,Lewis J P.Effects of a commercial heat-shock process on Vibrio vulnificus in the American oyster,Crassostrea virginica,harvested from the Gulf Coast[J].J Food Prot,1999,62(11):1 266 -1 269.
[16] Ama A A,Hamdy M K,Toledo R T.Effects of heating,pH and thermoradiation on inactivation of Vibrio vulnificus[J].Food Microbiol,1994,11(3):215 -227.
[17] Ruple A D,Cook D W.Vibrio vulnificus and indicator bacteria in shellstock and commercially processed oysters from the Gulf Coast[J].J Food Prot,1992 ,55(9):667-671.
[18] Kaysner C A,Tamplin M L,Wekell M M,et al.Survival of Vibrio vulnificus in shellstock and shucked oysters(Crassostreagigas and Crassostrea virginica)and effects of isolation medium on recovery[J].Appl Environ Microbiol,1989,55(12):3 072 -3 079.
[19] Bryan P J,Steffan R J,DePaola A,et al.Adaptive response to cold temperatures in Vibrio vulnificus[J].Curr Microbiol,1999,38(3):168 -175.
[20] Bang W,Drake M A,Jaykus L A.Recovery and detection of Vibrio vulnificus during cold storage[J].Food Microbiol,2007,24(6):664 -670.
[21] Bang W,Drake M A.Resistance of cold-and starvationstressed Vibrio vulnificus to heat and freeze-thaw exposure[J].J Food Prot,2002,65(6):975 -980.
[22] Tamplin M,Rodrick G E,Blake N J,et al.Isolation and characterization of Vibrio vulnificus from two Florida estuaries[J].Appl Environ Microbiol,1982,44(6):1 466-1 470.
[23] Marco-Noales E,Biosca E G,Amaro C.Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2(serovar E)[J].Appl Environ Microbiol,1999,65(3):1 117 -1 126.
[24] Berlin D L,Herson D S,Hicks D T,et al.Response of pathogenic Vibrio species to high hydrostatic pressure[J].Appl Environ Microbial,1999,65(6):2 776 -2 780.
[25] Cook D W.Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high-pressure processing[J].J Food Prot,2003,66(12):2 276 -2 282.
[26] Hu X,Mallikarjunan P,Koo J,et al.Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oyster[J].J Food Prot,2005,68(2):292 -295.
[27] Mallett J C,Beghian L E,Metcalf T.Potential of irradiation technology for improved shellfish sanitation[J].J Food Saf,1991,11(4):231 -245.
[28] Mahmoud B S M,Reduction of Vibrio vulnificus in pure culture,half shell and whole shell oysters(Crassostrea virginica)by X-ray [J].Int J Food Microbiol,2009,130(2):135-139.
[29] Andrews L,Jahncke M,Mallikarjunan K.Low dose gamma irradiation to reduce pathogenic Vibrios in live oysters[J].J of Aquatic Food Prod Technol,2003,12(3):71-82.
[30] Pelon W,Luftig R B,Johnston K H.Vibrio vulnificus load reduction in oysters after combined exposure to Vibrio vulnificus-specific bacteriophage and to an oyster extract component[J].J Food Prot,2005,68(6):1 188 -1 191.
[31] Koo J,DePaola A,Marshall D L.Effect of simulated gastric fluid and bile on survival of Vibrio vulnificus and Vibrio vulnificus phage[J].J Food Prot,2000,63(12):1 665-1 669.
[32] Wong H C,Liu S H.Susceptibility of the heat-,acid-,and bile-adapted Vibrio vulnificus to lethal low-salinity stress[J].J Food Prot,2006,69(12):2 924 -2 928.
[33] Paludan-Muller C,Weichart D,McDougald D,et al.A-nalysis of starvation conditions that allow for prolonged culturability of Vibrio vulnificus at low temperature [J].Microbiology,1996,142(7):1 675-1 684.
[34] Chhabra P,Huang Y W,Frank J F,et al.Fate of Staphylococcus aureus,Salmonella enterica serovar typhimurium,and Vibrio vulnificus in raw oysters treated with chitosan[J].J Food Prot,2006,69(7):1 600-1 604.
[35] Sagripanti J L,Eklund C A,Trost P A,et al.Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides[J].Am J Infect Control,1997,25(4):335-339.
[36] Sunen E.Minimum inhibitory concentration of smoke wood extracts against spoilage and pathogenic microorganisms associated with foods [J].Lett Appl Microbiol,1998,27(1):45-48.
[37] Sun Y,Oliver J D.Antimicrobial action of some GRAS compounds against Vibrio vulnificus[J].Food Addit Contam,1994,11(5):549-558.
[38] Johnson R W,Arnett F C.A fatal case of Vibrio vulnificus presenting as septic arthritis[J].Arch Intern Med,2001,161(21):2 616-2 618.
[39] Tamplin M L,Capers G M.Persistence of Vibrio vulnificus in tissues of Gulf Coast oysters,Crassostrea virginica,exposed to seawater disinfected with UV light[J].Appl Environ Microbiol,1992,58(5):1 506 -1 510.
[40] Groubert T N,Oliver J D.Interaction of Vibrio vulnificus and the eastern oyster,Crassostrea virginica[J].J Food Prot,1994,57(3):224 -228.
[41] Motes M L,DePaola A.Offshore suspension relaying to reduce levels of Vibrio vulnificus in oysters(Crassostrea virginica)[J].Appl Environ Microbiol,1996,62(10):3 875-3 877.
[42] Ren T,Su Y C.Effects of electrolyzed oxidizing water treatment on reducing Vibrio parahaemolyticus and Vibrio vulnificus in raw oysters[J].J Food Prot,2006,69(8):1 829-1 834.
[43] CAC [Codex Alimentarius Commission].Report of the 33rd Session of the Codex Committee on Food Hygiene[R].Washington D C,USA,2000.
[44] McCoubrey D J.Risk of Vibrio vulnificus infection following comsumption of raw commercially harvested North Island oyster[D].New Zealand:the University of Auckland,1996:86.
[45] Scientific Committee on Veterinary Measures relating to Public Health.Opinion of the scientific committee on veterinary measures relating to public health on Vibrio vulnificus and Vibrio parahaemolyticus(in raw and undercooked seafood)[Z].European Commission.Health&Consumer Protection Directorate-General.Directorate CScientific Opinions,2001:64.
[46] (FAO-WHO)Food and agriculture organization-world health organization.Risk assessment of Vibrio vulnificus in raw oysters.Microbiolgical risk assess.Series 8[EB/OL]. http://www.who.int/foodsafety/publications/micro/mra8/en/index.html.
[47] 姬华.对虾中食源性弧菌预测模型建立及风险评估[D].无锡:江南大学博士学位论文,2012:79.