国际科技信息
2012-11-15
国际科技信息
欧委会推出一项新的绿色创新行动计划
欧盟2020战略确定三大战略目标:经济智能性、可持续及包容性增长。为具体落实上述目标、占领绿色技术制高点、保持绿色创新(Eco-Innovation)世界领先水平、以及提升绿色工业世界竞争力,积极应对全球面临的环境压力、资源枯竭和气候变化,
欧委会于2011年12月15日通过决定,推出了一项新的绿色创新行动计划(EcoAP)。
EcoAP在原有环境技术行动计划(ETAP,Environment Technologies Action Plan)的基础上,围绕五大主题着手促进绿色创新的健康快速发展。一是改善政策法律环境;二是清除绿色创新障碍;三是扩大绿色创新需求;四是增加绿色创新投入;五是强化技术、创新、工业及市场衔接。
EcoAP的七项主要关键行动分别是:1)充分利用环境法规政策,促进绿色创新环境建设。2)积极支持绿色创新技术的商业化应用和公私合作伙伴项目,解决绿色创新体系薄弱环节障碍。3)适时创立和修正新标准,扩大绿色创新市场需求。4)重新整合投融资机制、增加公共资金投入,分担研发创新风险,支持绿色创新型中小企业的健康发展。5)加强拓展国际协调与合作,积极应对环境、资源、气候变化挑战。6)努力完善职业培训、新兴就业、能力建设体系,满足劳动市场的新兴需求。7)继续强化欧洲创新伙伴关系,有利于绿色创新知识的转移及转化。
欧洲绿色工业(Eco-Industries)已形成巨大产业,尽管中小企业众多,但2008年产值已达3190亿欧元(最新数据),平均每年仍然以接近8%的速度增长。欧委会对绿色创新的定义是,通过降低对环境的影响、或缓解环境的压力、或自然资源有效合理的利用,对经济社会可持续发展具有可证实、显著改进的所有创新形式。
Eco-innovation Action Plan (EcoAP) Launched
The EC has launched the Eco-Innovation Action Plan (EcoAP)as part of the Innovation Union Flagship Initiative of the Europe 2020 strategy for smart, sustainable and inclusive growth. It aims to bridge the gap between innovation and the market and boost innovation that reduces pressure on the environment.
The Action Plan will accelerate eco-innovation across all sectors of the economy with well targeted actions to help create stronger and more stable market demand for eco-innovation, it will take measures in the areas of regulatory incentives, private and public procurement and standards and it will mobilise support for SMEs to improve investment readiness and networking opportunities. The plan outlines a number of action points,including:
· Using environmental policy and legislation to promote ecoinnovation;
· Mobilising financial instruments and support services for SMEs;
· Promoting international co-operation and supporting demonstration projects and partnering;
· Developing new standards to boost eco-innovation;
· Supporting the development of emerging skills and jobs and related training programmes to match labour market needs.
The EcoAP builds on the 2004 Environmental Technologies Action Plan (ETAP), and expands the focus from green technologies to the broader field of ecoinnovation. It includes actions both on the demand and supply side,on research and industry and on policy and financial instruments.The Plan recognizes the key role of environmental regulation as a driver of eco-innovation, and stresses the importance of research and innovation to produce more innovative technologies and bring them to the market.
Environment Commissioner Janez Potočnik described the plan:"The innovation challenge for this Century will be making our resources go further - doing more with less – and reducing the impact of our activities. Europe must be in the lead in meeting that challenge if we want to be competitive in a world of increasing resource constraints. Worldwide demand for environmental technologies,products and services is growing rapidly even in these difficult times,and it's an area where Europe has much to offer. This is a plan for green jobs and green growth."
新合成分子可治疗自身免疫类疾病
最近,以色列魏兹曼科学研究所改变以往的治疗策略,用人工合成分子诱导免疫系统产生出特殊的抗体,可封锁在引发自身免疫疾病中起重要作用的一种酶MMP9,并在动物实验中取得成功。新合成分子在治疗克罗恩氏病等免疫系统疾病方面具有很大潜力,为寻找免疫类疾病疗法开辟了新方向。相关论文发表在《自然·医学》杂志网站上。
MMP是一种基质金属蛋白酶家族,在细胞动员、分裂、伤口愈合等方面起着关键作用。如果它们中的某些成员,尤其是MMP9失控的话,就会引发自身免疫疾病和癌症转移,封锁这些蛋白质有望找到治疗自身免疫类疾病的方法。开始时,研究人员设计出一种直接瞄准所有MMP成员的人造药物分子,但太过粗糙而且有很大副作用。
研究所生物调控分部教授艾丽特 萨基解释说,正常情况下,机体也能产生自己的MMP抑制剂,叫做TIMP,作为一种紧缩程序来控制MMP酶。这些自然产生的TIMP具有高度选择性,由三个组氨酸多肽围绕一个金属锌离子构成,每个手臂都极其精确,恰好能到达MMP酶的活性位点凹槽,像个软木塞那样堵住凹槽,使MMP失去活性。“要想复制这种精确性是非常困难的。”
研究人员转而寻找另外的替代方法,不是设计一种分子,而是直接攻击MMP。就像死亡病毒引发免疫系统生成抗体,攻击活病毒那样,他们想出了一种方法,通过MMP免疫反应“诱骗”机体生成瞄准MMP9的天然抗体,锁住其活性位点。
他们在MMP9的核心活性位点人工合成出一种金属锌-组氨酸复合物,然后把这些小分子注射到小鼠体内,并检查小鼠血液中抵抗MMP酶的免疫反应信号。研究人员对所产生抗体的原子结构进行了详细分析,发现它和TIMP有所不同,但作用极其相似,同样能到达酶的凹槽并封锁活性位点。抗体能选择性地仅针对MMP家族中的两个成员MMP2和MMP9,并与它们紧密结合。
New synthetic molecules treat autoimmune disease in mice
A team of Weizmann Institute scientists has turned the tables on an autoimmune disease. In such diseases, including Crohn's and rheumatoid arthritis, the immune system mistakenly attacks the body's tissues. But the scientists managed to trick the immune systems of mice into targeting one of the body's players in autoimmune processes, an enzyme known as MMP9. The results of their research appear today in Nature Medicine.
Prof. Irit Sagi of the Biological Regulation Department and her research group have spent years looking for ways to home in on and block members of the matrix metalloproteinase (MMP)enzyme family. These proteins cut through such support materials in our bodies as collagen, which makes them crucial for cellular mobilization, proliferation and wound healing, among other things. But when some members of the family, especially MMP9,get out of control, they can aid and abet autoimmune disease and cancer metastasis. Blocking these proteins might lead to effective treatments for a number of diseases.
Originally, Sagi and others had designed synthetic drug molecules to directly target MMPs. But these drugs proved to be fairly crude tools that had extremely severe side effects. The body normally produces its own MMP inhibitors,known as TIMPs, as part of the tight regulation program that keeps these enzymes in line. As opposed to the synthetic drugs, these work in a highly selective manner. An arm on each TIMP is precisely constructed to reach into a cleft in the enzyme that shelters the active bit – a metal zinc ion surrounded by three histidine peptides –closing it off like a snug cork.'Unfortunately,' says Sagi, 'it is quite difficult to reproduce this precision synthetically.'
Dr. Netta Sela-Passwell began working on an alternative approach as an M.Sc. student in Sagi's lab, and continued on through her Ph.D. research. She and Sagi decided that, rather than attempting to design a synthetic molecule to directly attack MMPs, they would try trick the immune system to create natural antibodies that target MMP-9 through immunization. Just as immunization with a killed virus induces the immune system to create antibodies that then attack live viruses, an MMP immunization would trick the body into creating antibodies that block the enzyme at its active site.
Together with Prof. Abraham Shanzer of the Organic Chemistry Department, they created an artificial version of the metal zinchistidine complex at the heart of the MMP9 active site. They then injected these small, synthetic molecules into mice and afterward checked the mice's blood for signs of immune activity against the MMPs. The antibodies they found,which they dubbed 'metallobodies,'were similar but not identical to TIMPS, and a detailed analysis of their atomic structure suggested they work in a similar way –reaching into the enzyme's cleft and blocking the active site. The metallobodies were selective for just two members of the MMP family – MMP2 and 9 – and they bound tightly to both the mouse versions of these enzymes and the human ones.
As they hoped, when they had induced an inflammatory condition that mimics Crohn's disease in mice, the symptoms were prevented when mice were treated with metallobodies. 'We are excited not only by the potential of this method to treat Crohn's,'says Sagi, but by the potential of using this approach to explore novel treatments for many other diseases.' Yeda, the technology transfer arm of the Weizmann Institute has applied for a patent for the synthetic immunization molecules as well as the generated metallobodies.
美研制出负折射率等离子纳米天线
美国科学家表示,他们的实验证明,纤细的等离子体纳米天线阵列能采用新奇的方式对光进行精确地操控,改变光的相位,创造出负折射现象,最新研究有望使科学家们研制出功能更强大的光子计算机等新式光学设备。相关研究发表在12月22日出版的《科学》杂志上。
该研究的领导者、普渡大学布瑞克纳米技术研究中心纳米光子学部门主管、电子和计算机工程教授弗拉基米尔·萨里切夫表示:“通过大大改变光的相位,我们能显著改变光的传播方式,因此,为很多潜在的应用打开了大门。”光的相位是指光波在前进时,光子振动所呈现的交替波形变化。同一种光波通过折射率不同的物质时,相位就会发生变化。
今年10月份,哈佛大学电子工程学教授费德里科·卡帕索领导的科研团队在《科学》杂志上撰文指出,他们利用一种新技术诱导光线路径,使得沿用了多年的斯涅耳定律受到挑战。斯涅耳定律指出,当光从一种介质进入另一种介质时,在这两种介质的交界处,相位不会突然发生变化。而哈佛大学的实验表明,通过使用一种新型结构的“超材料”,光的相位和传播方向都会发生巨大变化。这一研究发现使在预测光线由一种介质进入另一种介质时,其有别于经典的折射和反射定律,可以创建负折射现象,光的偏振也可以得到控制。
普渡大学的科研团队则更近一步,制造出了纳米天线阵列并大大改变了光波波长介于1微米(百万分之一米)到1.9微米之间的近红外线附近光波的相位和传播方向。萨里切夫表示:“我们将哈佛大学的研究拓展到近红外线区域,近红外线,尤其是波长为1.5微米的光线对通讯来说至关重要,通过光纤传送的信息使用的就是这个波长,最新研究在通讯领域将非常实用。我们也证明,这并非单频效应,适用于很多波段,因此,可广泛应用于很多技术领域。”
这种纳米天线是蚀刻在一层硅上方的金做成的V型结构,它们是一种“超材料”(一般都是所谓的等离子体结构),宽40纳米。科学家们也已证明,他们能让光通过一个宽度仅为光波波长五十分之一的超薄“等离子体纳米天线层”。
科学家们解释道,每种材料都有自己的折射率,可描述光在其中的弯曲程度。包括玻璃、水、空气等在内的所有天然材料的折射率都为正数,而新的超薄等离子体纳米天线层能导致光线大大改变其传播方向,甚至产生负折射现象,使用传统材料则无法做到这一点。这一创新有望让人们引导激光并改变激光的形状,应用于军事和通讯领域;有助于科学家们研制出使用光处理信息的光子计算机中的纳米电路以及功能强大的新型透镜等。
'Plasmonic nanoantennas' show promise in optical innovations
Researchers have shown how arrays of tiny "plasmonic nanoantennas" are able to precisely manipulate light in new ways that could make possible a range of optical innovations such as more powerful microscopes, telecommunications and computers.
The researchers at Purdue University used the nanoantennas to abruptly change a property of light called its phase. Light is transmitted as waves analogous to waves of water, which have high and low points. The phase defines these high and low points of light.
"By abruptly changing the phase we can dramatically modify how light propagates, and that opens up the possibility of many potential applications," said Vladimir Shalaev, scientific director of nanophotonics at Purdue's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.
Findings are described in a paper to be published online Thursday (Dec. 22) in the journal Science.
The new work at Purdue extends findings by researchers led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at the Harvard School of Engineering and Applied Sciences. In that work, described in an October Science paper, Harvard researchers modified Snell's law, a long-held formula used to describe how light reflects and refracts, or bends, while passing from one material into another.
"What they pointed out was revolutionary," Shalaev said.
Until now, Snell's law has implied that when light passes from one material to another there are no abrupt phase changes along the interface between the materials. Harvard researchers,however, conducted experiments showing that the phase of light and the propagation direction can be changed dramatically by using new types of structures called metamaterials, which in this case were based on an array of antennas.
The Purdue researchers took the work a step further,creating arrays of nanoantennas and changing the phase and propagation direction of light over a broad range of near-infrared light.The paper was written by doctoral students Xingjie Ni and Naresh K.Emani, principal research scientist Alexander V. Kildishev, assistant professor Alexandra Boltasseva,and Shalaev.
可在p型与n型间转换的新式晶体管问世
最近,德国科学家研制出一种新式的通用晶体管,其既可当p型晶体管又可当n型晶体管使用,最新晶体管有望让电子设备更紧凑;科学家们也可用其设计出新式电路。相关研究发表在最新一期的《纳米快报》杂志上。
目前,大部分电子设备都包含两类不同的场效应晶体管:使用电子作为载荷子的n型和使用空穴作为载荷子的p型。这两种晶体管一般不会相互转化。而德累斯顿工业大学和德奇梦达公司携手研制的新式晶体管可通过电信号对其编程,让其自我重新装配,游走于n型晶体管和p型晶体管之间。
新晶体管由单条金属—半导体—金属结构组成的纳米线嵌于一个二氧化硅外壳中构成。从纳米线一端流出的电子或空穴通过两个门到达纳米线的另一端。这两个门采用不同方式控制电子或空穴的流动:一个门通过选择使用电子或空穴来控制晶体管的类型;另一个门则通过调谐纳米线的导电性来控制电子或空穴。
传统晶体管通过在制造过程中掺杂不同元素来确定其是p型还是n型,而新式晶体管不需要在制造过程中掺杂任何元素,通过在一个门上施加外部电压即可重新配置晶体管的类型。施加的电压会使门附近的肖特基结阻止电子或空穴流过设备,如果电子被阻止,空穴能流动,那么,晶体管就是p型,反之则是n型。
研究人员解释道,使这种再配置能起作用的关键是调谐分别通过肖特基结(每个门一个)的电子流动情况,模拟显示,纳米线的几何形状在这方面起关键作用。
尽管该研究还处于初期阶段,但新式晶体管展示出了极佳的电学特性。比如,与传统纳米线场效应晶体管相比,其开/闭比更高,且漏电更少。该研究的领导者沃尔特·韦伯表示:“除采用人造纳米线外,采用目前先进的硅半导体制造技术也可以制造出这种晶体管,还可以用到自对准技术,大大提高工作频率和速度。”
接下来,科学家们计划通过改变材料的组成来改进新式晶体管的性能,并制造出由其运行的电路。他们表示,最大的挑战是,在将其与其他晶体管结合在一起时,如何将额外的门信号整合进来。
Universal transistor serves as a basis to perform any logic function
Most of today’s electronics devices contain two different types of field-effect transistors (FETs):n-type (which use electrons as the charge carrier) and p-type (which use holes). Generally, a transistor can only be one type or the other,but not both. Now in a new study,researchers have designed a transistor that can reconfigure itself as either n-type or p-type when programmed by an electric signal. A set of these “universal transistors”can, in principle, perform any Boolean logic operation, meaning circuits could perform the same number of logic functions with fewer transistors. This advantage could lead to more compact hardware and novel circuit designs.
The researchers who designed the transistor, led by Walter M. Weber at Namlab gGmbH in Dresden, Germany, have published the new concept in a recent issue of Nano Letters.
“Synthetic nanowires are used to realize the proof-ofprinciple,” Weber told PhysOrg.com. “However, the concept is fully transferable to state-of-the-art CMOS silicon technology and can make use of self-aligned processes.”
The new transistor’s core consists of a single nanowire made of a metal-semiconductor-metal structure, which is embedded in a silicon dioxide shell. Electrons or holes flow from the source at one end of the nanowire through two gates to the drain at the other end of the nanowire. The two gates control the flow of electrons or holes in different ways. One gate selects the transistor type by choosing to use either electrons or holes, while the other gate controls the electrons or holes by tuning the nanowire’s conductance.
Using a gate to select por n-type configuration is quite different from conventional transistors. In conventional transistors, p- or n-type operation results from doping that occurs during the fabrication process,and cannot be changed once the transistor is made. In contrast, the reconfigurable transistor doesn’t use any doping. Instead, an external voltage applied to one gate can reconfigure the transistor type even during operation. The voltage causes the Schottky junction near the gate to block either electrons or holes from flowing through the device. So if electrons are blocked, holes can flow and the transistor is p-type. By applying a slightly different voltage, the reconfiguration can be switched again, without interfering with the flow.
The scientists explain that the key to making this reconfiguration work is the ability to tune the electronic transport across each of the two junctions (one per gate) separately. Their simulations showed that the current is dominated by tunneling, suggesting that the nanowire geometry plays an important role in the ability for independent junction control.
Because the reconfigurable transistor can perform the logic functions of both p- and n-type FETs, a single transistor could replace both a p- and n-type FET in a circuit, which would significantly reduce the size of the circuit without reducing functionality.Even at this early stage, the reconfigurable transistor shows very good electrical characteristics,including a record on/off ratio and reduced leakage current compared to conventional nanowire FETs. In the future, the researchers plan to further improve the transistor’s performance.
“We are varying the material combinations to further boost device performance,” Weber said. “Further on, first circuits implementing these devices are being built. … The biggest challenge will be to incorporate the extra gate signals in the cell layout allowing flexible interconnection to the other transistors.”
西班牙科学家首次观察到磁振子拖曳
西班牙卡特兰纳米技术研究院研究人员称,他们在一项最新发现中首次观察到了磁振子拖曳。这一发现结束了科学家50年来追寻独立热电效应的历程,对研究能量转化应用、开发自旋信息传输新途径也具有重要意义。相关论文发表在12月18日《自然·材料学》杂志网站上。
热电效应能帮助人们在纳米尺度管理热量,利用热量流动来操控自旋信息。随着信息技术的发展,自旋电子学中的热电效应越来越受到人们关注。上世纪50年代首次发现热电效应,在固体中,当电子经过原子,其电荷就会改变附近的晶格结构,产生波动;反过来,晶格波动也会影响电子运动,就像海浪推动一个冲浪运动员在滑行。这种相互作用导致的热电效应其实是一种声子拖曳效应。此后不久,科学家预言在磁性材料中也存在类似现象:磁振子拖曳。
在铁磁体中,自旋保持着平行的方向。如果发生了紊乱,就会产生自旋波影响电子运动,因此磁振子流(自旋波量子)也会拖动电子。研究人员解释说,尽管这和声子拖曳很相似,但要观察磁振子拖曳却非常困难。主要原因是声子拖曳太显著,把磁振子拖曳和声子拖曳区别开非常困难。多年来,科学家只报道过一些间接证据。
为此,研究人员设计了一种特殊设备来分开磁振子拖曳和其他热电效应。这种设备类似一种温差电堆,在冷热源之间以热并联电串连的方式排布大量成对的铁磁线,通过控制成对铁磁线中的磁方向,来分离电子和声子拖曳的热电效应,独立研究磁振子拖曳。
论文指出,检测结果作为温度的函数,显示出磁振子拖曳效应服从磁振子和声子总体变化。这一信息对理解电子—磁振子相互作用、磁振子动力学和热自旋传输的物理机制非常关键。
A 50-year quest to isolate the thermoelectric effect is now over:Magnon drag unveiled
In a paper published in Nature Materials, a group of researchers at the Catalan Institute of Nanotechnology(ICN, Spain) led by Prof. Sergio O. Valenzuela reports the observation of the magnon drag. This work ends a 50-year long effort to isolate this elusive thermoelectric effect.
As electrons move past atoms in a solid, their charge distorts the nearby lattice and can create a wave. Reciprocally, a wave in the lattice affects the electrons motion, in analogy to a wave in the sea that pushes a surfer riding it. This interaction results in a thermoelectric effect that was first observed during the 1950's and has come to be known as phonondrag, because it can be quantified from the flow of lattice-wave quanta (phonons) that occurs over the temperature gradient.
Soon after the discovery of the phonon drag, an analogous phenomenon was predicted to appear in magnetic materials:the so called magnon drag. In a magnetic material the intrinsic magnetic moment or spin of the electrons arrange in an organized fashion. In ferromagnets, the spins maintain a parallel orientation. If a distortion in the preferred spin orientation occurs, a spin wave is created that could affect electron motion. It is therefore reasonable to expect that the flow of magnons(spin-wave quanta) could also drag the electrons.
Despite the similarities with phonon drag, the observation of the magnon drag has been elusive, and only a few indirect indications of its existence have been reported over the years. The main reason being the presence of other thermoelectric effects, most notably the phonon drag, that make it difficult to discriminate its contribution to the thermopower.
Researchers of ICN's Physics and Engineering of Nanodevices Group, Marius V. Costache,Germán Bridoux, Ingmar Neumann and group leader ICREA Prof.Sergio O. Valenzuela used a unique device geometry to discriminate the magnon drag from other thermoelectric effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects.
The work is very timely as thermoelectric effects in spinelectronics (spintronics) are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of thermal spin transport. It both provides invaluable opportunities to gather knowledge about electron-magnon interactions and may be beneficial for energy conversion applications and for the search of novel pathways towards transporting spin information.