含causal算子分数阶非线性微分方程的拟线性方法
2012-11-10王培光李志芳
王培光,李志芳
(1.河北大学 电子信息工程学院,河北 保定 071002;2.河北大学 数学与计算机学院,河北 保定 071002)
研究报告
含causal算子分数阶非线性微分方程的拟线性方法
王培光1,李志芳2
(1.河北大学 电子信息工程学院,河北 保定 071002;2.河北大学 数学与计算机学院,河北 保定 071002)
采用拟线性化方法讨论了含causal算子的分数阶非线性微分方程初值问题,通过构造2个单调迭代序列,证明了它们一致且平方收敛于给出问题的解.
拟线性方法;causal算子;分数阶微分方程;平方收敛
在非线性微分方程解的定性问题的研究中, 拟线性化方法得到了广泛的使用[1].由于含causal算子微分方程系统模型可描述现实世界的许多问题, 因而引起了人们的广泛关注.文献[2]利用上下解结合单调迭代方法, 给出了一类一致收敛于含causal算子微分方程解的迭代序列.近年来分数阶微分方程引起了人们的广泛关注[3-7].然而关于用拟线性化方法研究含causal算子分数阶微分方程初值解的结果并未见到.本文将利用拟线性化方法对含causal算子的分数阶非线性微分系统两项和的初值问题(简称IVP)
cDqu(t)=(Qu)(t)+(Pu)(t),u(0)=u0
(1)
进行研究,得到解的一致且平方收敛的结果.这里Q,P∶E→E是连续causal算子,cDq是Caputo分数阶导数,0lt;qlt;1,E=C(J×R,R)和t∈J=[0,T].
1 预备知识
利用下面定义和引理证明主要定理.
定义1 如果对于E=C[J×R,R]中每对元素(x,y),使x(s)=y(s),有(Qx)(t)=(Qy)(t),其中0≤s≤t,tlt;T,T是任意正实数,则称Q∶E→E是causal算子.
式(1)等价的Volterra分数阶积分方程[9]为
其中Γ是Gamma函数.
定义2 考虑初值问题式(1),若α,β∈Cq[J,R],满足
cDqα(t)≤(Qβ)(t)+(Pβ)(t),α(0)≤u0,
cDqβ(t)≥(Qα)(t)+(Pα)(t),β(0)≥u0,
则称α,β分别是式(1)的耦合下解和耦和上解.
引理1[2]若v,w∈Cq[J,R]分别是式(1)的耦合下解和耦合上解,且v(t)≤w(t),t∈J和Q,P∈[Ω,R],其中Ω=[(t,x)∶v(t)≤x≤w(t),t∈J],则存在式(1)的唯一解x(t)满足v(t)≤x(t)≤w(t),t∈J.
引理2[10]设v,w∈Cq[J,R],Q∈C[J×R2,R],若cDqv(t)≤Q(t,w,w),cDqw(t)≥Q(t,v,v),
Q(t,x1,y1)-Q(t,x2,y2)≥-L[(x1-x2)+(y1-y2)],L≥0,
其中Q是causal算子,x1≥x2,y1≥y2,且v(0)≤w(0),则有v(t)≤w(t),t∈J.
证明设w0=w+εEq(3Ltq),v0=v-εEq(3Ltq),其中Eq(3Ltq)表示e3Lt的0lt;qlt;1阶导数,εgt;0是任意小的实数,则有w0gt;w,v0lt;v和w0(0)gt;w(0)gt;v0(0).由已知条件可得
cDqv0(t)=cDqv(t)-3LεEq(3Ltq)≤Q(t,w,w)-3LεEq(3Ltq)≤
Q(t,w,w0)+LεEq(3Ltq)-3LεEq(3Ltq)≤
Q(t,w0,w0)+2LεEq(3Ltq)-3LεEq(3Ltq)lt;
Q(t,w0,w0).
同理可得
cDqw0(t)=cDqw(t)+3LεEq(3Ltq)≥Q(t,v,v)+3LεEq(3Ltq)≥
Q(t,v,v0)-LεEq(3Ltq)+3LεEq(3Ltq)≥
Q(t,v0,v0)-2LεEq(3Ltq)+3LεEq(3Ltq)gt;
Q(t,v0,v0).
下面证明v0(t)lt;w0(t),t∈J.假设不然,则存在t0∈(0,T]使v0(t0)=w0(t0),v0(t)lt;w0(t),0≤tlt;t0成立,由此可得cDqv0(t0)≥cDqw0(t0),则进一步有
Q(t,w0(t0),w0(t0))gt;cDqv0(t0)≥cDqw0(t0)gt;Q(t,v0(t0),v0(t0)),
此不等式与
Q(t,w0(t0),w0(t0))=Q(t,v0(t0),v0(t0))
矛盾,其中v0(t0)=w0(t0).因此v0(t)lt;w0(t),t∈J成立.
在v(t)-εEq(3Ltq)=v0(t)lt;w0(t)=w(t)+εEq(3Ltq)中令ε→0,则有v(t)≤w(t),t∈J.证毕.
引理3[7-8]对于Caputo线性分数阶微分方程
cDqu=λu+(Qu)(t),u(0)=u0,
其中Q∈Cq[J,R],且对q为Hölder连续,其唯一解
其中
分别是含1个参数和2个参数的Mittag-Leffler方程.
2 主要结果
定理1 假设下列条件成立:
(A1)α0,β0∈Cq[J,R],α0(t)≤β0(t),t∈J,满足
cDqα0(t)≤(Qβ0)(t)+(Pβ0)(t),
cDqβ0(t)≥(Qα0)(t)+(Pα0)(t);
(A2)Q,P∈C[Ω,R],Frechet导数Qu,Pu,Quu和Puu存在,连续且满足(Quuu)(t)≥0,(Puuu)(t)≤0,(t,u)∈Ω.
(A3)(Quu)(t)≤0和(Puu)(t)≤0,(t,u)∈Ω,
则存在2个单调序列{αn}和{βn}一致且平方收敛于式(1)的唯一解.
证明由(Quuu)(t)≥0,(Puuu)(t)≤0,对u≥v有下列不等式成立
(Qu)(t)≤(Qv)(t)+(Quu)(u-v)(t),
(2)
(Pu)(t)≤(Pv)(t)+(Puv)(u-v)(t).
(3)
对于任意的α0(t)≤u2≤u1≤β0(t),t∈J;Q,P满足
L(u1-u2)≥(Qu1)(t)-(Qu2)(t)≥-L(u1-u2),Lgt;0,
(4)
L(u1-u2)≥(Pu1)(t)-(Pu2)(t)≥-L(u1-u2).
(5)
考虑下面初值问题
(6)
(7)
其中α0(0)≤u0≤β0(0).
由不等式(2),(3)和(A1)可知
cDqα0(t)≤(Qβ0)(t)+(Pβ0)(t)≡F(t,α0,β0;β0);
cDqβ0(t)≥(Qα0)(t)+(Pα0)(t)≥(Qβ0)(t)+(Quβ0)(α0-β0)(t)+
(Pβ0)(t)+(Puα0)(α0-β0)(t)≡F(t,α,β0;α0);
cDqα0(t)≤(Qβ0)(t)+(Pβ0)(t)≤(Qα0)(t)+(Quβ0)(β0-α0)(t)+
(Pα0)(t)+(Quα0)(β0-α0)(t)≡G(t,α0,β0;β0)
cDqβ0(t)≥(Qα0)(t)+(Pα0)(t)≡G(t,α0,β0;α0).
由于(Quu)(t)≤0和(Puu)(t)≤0,可得F(t,α0,β0;v)和G(t,α0,β0;u)分别对于v和u是非增的.由引理1可知式(6)和(7)存在唯一解(α1,β1),满足α0≤α,β1≤β0,t∈J.
即
cDqα1(t)=F(t,α0,β0;β1);
cDqβ1(t)=G(t,α0,β0;a1).
由不等式(2)和(3)可得
cDq(α1)(t)=(Qβ0)(t)+(Quβ0)(β1-β0)(t)+(Pβ0)(t)+(Puα0)(β1-β0)≤
(Qβ1)(t)+(Quβ0)(β0-β1)(t)+(Quβ0)(β1-β0)(t)+
(Pβ1)(t)+(Puβ1)(β0-β1)(t)+(Puα0)(β1-β0)(t)=
(Qβ1)(t)+(Pβ1)(t)+[(Puβ1)(t)-(Puα0)(t)](β0-β1)(t)≤
(Qβ1)(t)+(Pβ1)(t);
cDqβ1(t)=(Qα0)(t)+(Quβ0)(α1-α0)(t)+(Pα0)(t)+(Puα0)(α1-α0)(t)≥
(Qα1)(t)+(Quα1)(α0-α1)(t)+(Quβ0)(α1-α0)(t)+
(Pα1)(t)+(Puα0)(α0-α1)(t)+(Puα0)(α1-α0)(t)=
(Qα1)(t)+(Pα1)(t)+[(Quβ0)(t)-(Quα1)(t)](α1-α0)(t)≥
(Qα1)(t)+(Pα1)(t).
因为(Quu)(t)关于u是非减的,(Puu)(t)关于u是非增的,因此应用引理2,可得α1(t)≤β1(t),t∈J即
α0(t)≤α1(t)≤β1(t)≤β0(t),t∈J.
(8)
考虑下面一组初值问题
cDqu(t)=F(t,α1,β1;v),u(0)=u0,
(9)
cDqv(t)=G(t,α1,β1;u),v(0)=u0,
(10)
可推出下列不等式
cDqα1(t)≤(Qβ1)(t)+(Pβ1)(t)≡F(t,α1,β1;β1);
cDqβ1(t)≥(Qα1)(t)+(Pα1)(t)≥(Qβ1)(t)+(Quβ1)(α1-β1)(t)+
(Pβ1)(t)+(Puα1)(α1-β1)(t)≡F(t,α1,β1;α1);
cDqα1(t)≤(Qβ1)(t)+(Pβ1)(t)≤(Qβ1)(t)+(Quβ1)(β1-α1)(t)+
(Pα1)(t)+(Puα1)(β1-α1)(t)≡
G(t,α1,β1;β1);
cDqβ1(t)≥(Qα1)(t)+(Pα1)(t)≡G(t,α1,β1;α1).
由引理1可知式(9)和式(10)存在唯一解α2,β2使α1≤α2,β2≤β1,t∈J成立.同样由于
cDqα2(t)≤(Qβ2)(t)+(Pβ2)(t);
cDqβ2(t)≥(Qα2)(t)+(Pα2)(t).
则应用引理2可得α2(t)≤β2(t),t∈J.综上可知
α0≤α1≤α2≤β2≤β1≤β0,
如此继续下去,可得
α0≤α1≤α2≤…≤αn≤βn≤…≤β2≤β1≤β0,
(11)
其中单调序列{αn(t)},{βn(t)}是下列线性方程初值问题
cDqαn+1(t)=F(t,αn,βn;βn+1),αn+1(0)=u0,
(12)
cDqβn+1(t)=G(t,αn,βn;αn+1),βn+1(0)=u0
(13)
的解.综上所述很容易得知{αn(t)},{βn(t)}序列一致收敛于式(1)的唯一解.
下面证明收敛速度是2次的.为了证明收敛速度是2次, 设pn(t)=u(t)-αn(t),qn(t)=βn(t)-u(t), 其中u(t)是式(1)的唯一解.利用αn,βn的定义, 中值定理以及(A2), 有
cDqpn(t)=cDqu(t)-cDqαn(t)=
(Qu)(t)+(Pu)(t)-[(Qβn-1)(t)+(Quβn-1)(βn-βn-1)(t)+
(Pβn-1)(t)+(Puαn-1)(βn-βn-1)(t)]=
-(Quξ)qn-1(t)-(Puσ)qn-1(t)-(Quβn-1)[qn-qn-1](t)-
(Puαn-1)[qn-qn-1](t)≤
[(Quβn-1)(t)-(Quu)(t)]qn-1(t)+
[(Puαn-1)(t)-(Puβn-1)(t)]qn-1(t)+Mqn(t)=
即
(14)
其中ult;ξ,σlt;βn-1,αn-1lt;σ1lt;βn-1,ult;ξ1lt;βn-1,|(Quu)(t)|≤M1,|(Puu)(t)|≤M2,|(Quuu)(t)|≤N1,|(Puuu)(t)|≤N2和M=M1+M2.
同理,
cDqqn(t)=cDqβn(t)-cDqu(t)=
(Qαn-1)(t)+(Quβn-1)(αn-αn-1)(t)+(Pαn-1)(t)+
(Puαn-1)(αn-αn-1)(t)-(Qu)(t)-(Pu)(t)=
(Quξ)(αn-1-u)(t)+(Puσ)(αn-1-u)(t)+
(Quβn-1)(αn-αn-1)(t)+(Puαn-1)(αn-αn-1)(t)=
-(Quξ)pn-1(t)-(Puσ)pn-1(t)+(Quβn-1)pn-1(t)-
(Quβn-1)pn(t)+(Puαn-1)pn-1(t)-(Puαn-1)pn(t)=
[-(Quξ)(t)+(Quβn-1)(t)]pn-1(t)+[-(Puσ)(t)+
(Puαn-1)(t)]pn-1(t)-(Quβn-1)pn(t)-(Puαn-1)pn(t)≤
[(Quβn-1)(t)-(Quαn-1)(t)]pn-1(t)+[(Puαn-1)(t)-(Puu)(t)]pn-1(t)-
[(Quβn-1)(t)+(Puαn-1)(t)]pn(t)=
[(Quβn-1)(t)+(Puαn-1)(t)]pn(t),
其中αn-1lt;ξ,σlt;u,αn-1lt;ξ1lt;βn-1,αn-1lt;σ1lt;u.但
因此
(15)
定理证毕.
[1] LAKSHMIKANTHAM V, VATSALA A S.Generalized quasilinearization for nonlinear problems[M].Dordrecht: Kluwer Academic Publishers,1998.
[2] LAKSHMIKANTHAM V, LEELA S, DRICI Zahia etc.Theory of causal differential equations[M].World Scientific: Atlantis Press, 2009.
[3] GENG Fengjie.Differential equations involving causal operators with nonlinear periodic boundary conditions[J].Mathematical and Computer Modelling, 2008, 48,859-866.
[4] JANKOWSKI T.Boundary value problems with causal operators[J].Nonlinear Analysis, 2008, 68:3625-3632.
[5] DIETHELM K, FORD N J.Analysis of fractional differential equations[J].Anal Appl, 2002, 265(2):229-248.
[6] CAPUTO M.Linear models of dissipation whose Q is almost independent Ⅱ[J].Geophys J R Astron, 1967, 13(5):529-539.
[7] VASNUDHARA DEVI J, MCREA F A, DRICI Z.Generaized quasilinearization for fractional differential equations[J].Comp Math Appl, 2010, 59(3):1057-1062.
[8] VASNUDHARA DEVI J, SUSEELA CH.Quasilinearization for fractional differential equations[J].Communications in Applied Analysis, 2008, 12(4):407-418.
[9] VASNUDHARA DEVI J.Generalized monotone method for periodic boundary value problems of Caputo fractional differential equations[J].Communications in Applied Analysis, 2008, 12(4), 399-406.
[10] 王培光, 高玮.集值微分方程初值问题的拟线性化方法[J].河北大学学报: 自然科学版, 2011,31(1):1-6.
WANG Peiguang,GAO Wei.Quasilinearization of initial value problem for set differential equations[J]Journal of Hebei University:Natural Science Edition,2011,31(1):1-6.
(责任编辑:王兰英)
Quasilinearizationforsolutionofnonlinearcausalfractionaldifferentialequations
WANGPei-guang1,LIZhi-fang2
(1.College of Electronic and Information Engineering, Hebei University, Baoding 071002, China; 2.College of Mathematics and Computer Science, Hebei University, Baoding 071002, China)
By using the quasilinearization method for causal fractional differential equations, the authors construct two monotone sequences, then prove that they both converge uniformly and quadratically to the solution of the given problem.
quasilinearization method; causal operator; fractional differential equations; quadratic convergence
O175.1
A
1000-1565(2012)01-0001-06
2011-09-21
国家自然科学基金资助项目(10971045);河北省自然科学基金资助项目(A2009000151)
王培光(1963-), 男, 黑龙江哈尔滨人, 河北大学教授, 博士生导师, 主要从事微分方程与控制理论方面的研究.
E-mail:pgwang@hbu.edu.cn
MSC2010: 34A34