半潜式平台结构抗撞性能研究
2012-09-15程正顺胡志强杨建民
程正顺,胡志强,杨建民
(上海交通大学 海洋工程国家重点实验室,上海 200240)
海洋平台在海上运输、安装、作业过程中可能遭受船只或海洋漂浮物的意外撞击,使其产生一定的结构损伤,碰撞损伤是海洋平台安全性的重大隐患。Tebbertt[1]对世界上100起需要修理的海洋平台损伤原因进行了分析,发现将近25%的海洋平台发生事故的原因是由于碰撞引起的。遭受碰撞损伤后,海洋平台仍要承受恶劣的海洋环境载荷,因此,如何分析与提高海洋平台的碰撞性能,对保证海洋平台的安全性能,具有非常重要的意义。
船舶与海洋平台碰撞是船舶碰撞领域研究的热点之一,碰撞刚度、损伤形态、能量耗散、局部构件吸能特性等是重点关注的碰撞特性。金伟良[2]采用非线性弹簧来模拟受损构件的凹陷特性,计算分析了船舶侧向撞击导管架平台结构在不同的碰撞接触时间下的构件损伤情况。Amante[3]考虑几何非线性与材料非线性,研究受供应船撞击后的半潜式平台圆筒的抗弯强度,并与完整的半潜式平台的极限抗弯强度进行比较分析。胡志强[4]模拟了三种工况,即供应船船侧沿横向、纵向、斜向半潜式平台立柱时,研究立柱结构的抗撞特性,并评估了撞击对平台整体强度的影响。先前有关船舶与半潜式平台碰撞特性的研究中,均对船舶模型进行了简化,以部分舷侧外板或船首外板作为刚性材料代替整船,而忽略了碰撞过程中船体结构变形和撞击船运动惯性的影响。此外,以往研究中经常以半潜平台立柱代替整个平台,忽略了平台运动惯性的影响。本文研究中,准确模拟撞击船首,并建立了整船和整平台模型,以准确考虑撞击船和平台的惯性影响。
有限元数值仿真是在船舶碰撞领域广泛应用并得到验证的技术。本文在分析显示非线性有限元基本理论和碰撞仿真关键技术的基础上,模拟了整船与半潜式平台的碰撞,文中定义了三种不同的碰撞场景,使船首分别沿纵向、横向和斜向撞向平台立柱,获得了船舶和半潜式平台碰撞过程中的结构损伤变形,碰撞力-撞深和能量转化关系等曲线及相关数据,并讨论了立柱结构形式和撞击位置对半潜式平台抗撞性能的影响。
1 研究方法
非线性有限元方法是研究分析船舶与海洋结构物碰撞问题的有效途径。本文的碰撞分析计算,利用MSC公司的分析结构非线性行为的有限元程序MSC/Dytran完成。Kusuba等[5]进行的实尺度实验表明,MSC/Dytran有限元程序所得到的数值仿真结果与实验结果之间有比较好的吻合。
1.1 碰撞运动方程
船舶碰撞运动微分方程为:
其中Fre=Fext-Fint,为剩余力矢量;Fext为外载荷矢量;Fint=Cv+Kd为内部力矢量;
M,C,K分别表示质量矩阵、阻尼矩阵和刚度矩阵;a,v,d分别为加速度矢量、速度矢量和位移矢量。
若采用集中质量,即质量矩阵M变为对角阵,即各自由度的方程将是相互独立的,即:
1.2 显示求解方法
瞬间的动态变化过程适合用显示积分方法进行求解。用显式积分方法求解问题时,不需要进行矩阵求逆或分解,无须求解联立方程组,计算速度快,其稳定性准则能自动控制计算步长的大小,保证时间积分的精度。用显示求解方法求解碰撞运动方程,由方程(2)可直接求出:
在时间上采用中心差分法,即:
1.3 接触算法
接触问题的处理是结构碰撞计算过程中重要而困难的部分。本文采用自适应主-从面接触进行接触定义,自适应接触是模拟碰撞结构破坏过程的有效工具。当接触面范围内的单元失效后,程序会自动对接触面上的相应位置进行更改。对于板单元,破坏的单元将会被删除,自然地形成破洞[6]。
主-从接触面包括主面和从面,主面和从面分别定义在两个不同的结构上,在计算开始时,主面和从面是分开的。在程序求解的每一个时间步,程序检查从面上的每一个节点,首先找到距离该点最近的主面面段,看节点是否穿透了该面段。如果没有,计算继续进行。如果已经发生穿透,程序将在垂直于主面的方向上施加作用力阻止进一步的穿透发生。这个力就是接触力,接触力的大小取决于穿透量及接触刚度,接触刚度由接触面两侧单元特性决定,它描述结构抵抗这种接触变形的能力。另外,由于滑移影响,接触面之间也会产生摩擦力,摩擦力的大小等于摩擦系数乘以接触力。
2 模型参数及碰撞场景定义
2.1 半潜式平台与撞击船关键参数
半潜式平台的工作水深为3 000 m,其主尺度如表1所示;撞击船的主尺度如表2所示。
表1 半潜式平台主尺度Tab.1 Main scantling of the semi-submersible
表2 撞击船主尺度Tab.2 Main scantling of the striking ship
2.2 碰撞场景定义
船舶与海洋结构物发生碰撞的情形主要有以下两种[7]:
(1)极限海况下,船舶发生横漂,船体舷侧撞击在锚泊的半潜式平台立柱上。通过海洋环境的统计数据可以计算出这种事故的发生概率。
(2)船舶以一定速度撞向半潜式平台。这种情形似乎很少见,但它确实发生过[8]。此时,船舶与半潜式平台间的碰撞可分为船舶与立柱间的碰撞,和船舶与浮箱间的碰撞。本文所研究的场景是前者,考虑到撞击船正向撞击立柱时对立柱造成的损害更大,因而本文研究的重点是撞击船与平台立柱间的正向碰撞。
根据上述场景定义,撞击船与半潜式平台碰撞的计算工况定义如图1所示,从俯视图可以看出,半潜式平台立柱的3个不同位置分别受到撞击船的正向撞击,case 1,case 2和case 3分别表示撞击船沿纵向,斜向和横向撞向半潜式平台立柱,位置1,位置2和位置3分别为立柱上对应的撞击位置;侧视图反映了撞击船船首与半潜式平台立柱间的垂向位置关系。撞击船的初始撞击速度均为6.0 m/s。
图1 撞击场景定义Fig.1 Collision scenario definition
3 有限元模型
根据撞击船和半潜式平台的设计图纸,利用有限元软件MSC/Patran分别建立了撞击船与半潜式平台的有限元模型,如图2所示。网格的疏密会影响数值模拟结果的精度和计算时间的长短。在碰撞区域,撞击船首结构和半潜式平台立柱结构均采用了精细的网格,网格尺度为100 mm×100 mm,以准确模拟碰撞过程中的结构损伤变形;非碰撞区域结构均采用了较为粗糙网格,以考虑船舶和半潜式平台惯性对碰撞运动的影响,并减小计算时间。半潜式平台有限元模型单元总数为319 247,撞击船有限元模型单元总数为133 844。
图2 有限元模型Fig.2 Finite element model
碰撞过程中,非碰撞区域结构发生变形较小,可将该区域材料视为刚体;碰撞区域结构将发生弹塑性大变形,可将该区域材料模拟为弹塑性材料,弹塑性材料的基本参数如下:
密度ρ=7 850.0 kg/m3;
弹性模量E=2.1×1011N/m3;
泊松比μ=0.3;
屈服应力σ0=2.35×108N/m2;
当单元的等效塑性应变超过定义的极限塑性应变时,单元发生断裂失效。单元材料的断裂应变极限值受单元网格尺度的影响,根据本模型网格大小,取断裂的极限应变为ε=0.35。
由于船舶碰撞是一个瞬态过程,材料的损伤应变具有一定速率,因此要考虑材料应变率敏感性的影响。本文采用与实验数据符合得比较好的Cowper-Symonds 本构方程[9]:
式中σ'0是在塑性应变率ε时的动屈服应力,σ0是相应的静屈服应力,D和q对于具体材料来说是常数。本模型中材料为船用钢,取D=40.4和q=5。
在接触计算中,程序根据在保持计算稳定的条件下使穿透量最小的原则计算接触力的大小,摩擦力的大小等于摩擦系数与接触力的乘积。摩擦系数的计算按照以下公式[10]:
式中,μs为静摩擦系数,μk为动摩擦系数,β为指数衰减系数,v为主从面之间的相对滑行速度。本模型中选取 μs=0.3,μk=0.3,β =0。
船舶和半潜式平台运动时,应考虑船舶和半潜式周围水对其运动的影响,本文采用附连水质量来处理。撞击船船体的运动主要是纵荡,取其附连水质量系数为0.05。本文中所取的半潜式平台和撞击船的附连水质量系数如表3所示。
表3 附连水质量系数Tab.3 The added mass coefficient
4 计算结果及其分析
半潜式平台的抗撞性能是其固有属性,受撞击船初始速度的影响较小,本文所建立的有限元模型较大,为了节约计算时间,并为了考虑半潜式平台的极限承载能力,在数值模拟过程中,假定的撞击船初始速度较大,为6 m/s。三种工况均在撞深达到6.0 m时停止计算,整个碰撞仿真过程历时约1.04 s。数值仿真结果可以分析船舶与海洋平台碰撞过程的一般现象和基本规律。
半潜式平台立柱及船首的结构损伤图如图3所示。从图中可以看出,结构碰撞损伤变形具有明显的局部性,基本上集中在碰撞接触区域。在case 1和case 3中,立柱外板发生膜拉伸变形,由于横向水平框架和垂向舱壁的联合抵抗作用,外板膜拉伸变形到一定程度时发生撕裂破坏,水平框架和舱壁发生严重的面内弯曲和侧向弯曲;在case 2中,立柱外板发生明显的拉伸变形,由于缺少垂向舱壁的抵抗,计算停止时,外板并没有破裂,立柱水平框架发生严重的屈曲变形,立柱舱壁基本没有发生破坏,因为球鼻艏尚未与立柱舱壁发生接触。该撞击船船首属于前倾型,在三种工况下,船首上部结构和平台立柱均发生了碰撞接触,船首上层甲板发生渐近屈曲破坏,船首外板发生严重的压溃破坏;球鼻艏碰撞损伤相对较小,因为其刚度与平台立柱结构相比是较大的。在case 1和case 3中,尖锐刚硬的球鼻艏贯入平台立柱。
图3 船首及半潜式平台立柱结构损伤图Fig.3 Structural damage modes of the ship bow and the semi column for the three collision cases
表4 三种工况下能量分布 (单位MJ)Tab.4 Energy distributions for the three collision cases(Unit:MJ)
表5 半潜式平台可承受的极限撞击动能Tab.5 The extreme collision kinetic energy that semi can bear
表6 三种工况下立柱各结构吸收变形能及其比例Tab.6 Distortion energy absorption and proportion of the column structural set for the three collision cases
撞击船的初始动能为688.7 MJ,计算停止时,三种工况下撞击船耗散动能转换后的能量分布如表4所示。从理论上讲,撞击船损失的动能主要由平台结构和撞击船结构的弹塑性变形,平台的刚体运动及周围水的强迫运动等吸收,周围水的影响已采用附连水质量加以考虑。由表4可以明显看出,受撞半潜式平台的立柱发生塑性变形所吸收的能量约占撞击船所损失动能的70%,剩余的能量主要转化为撞击船的塑性变形能,受撞平台刚体运动所消耗的能量较少。这是因为碰撞过程中存在运动滞后现象。
由表4还可发现,计算停止时,撞击船还有较多的动能,这并不影响对平台立柱结构抗撞性能的分析。在case 1和case 3中,半潜式平台的立柱外板均已发生破裂,这表明半潜式平台能承受的撞击动能存在极限值。定义立柱外板发生破裂时半潜式平台所转化的撞击动能为其可承受极限撞击动能,这样定义的原因是:当外板破裂时,海水大量进入平台立柱,将严重影响平台稳性和安全性。分析半潜式平台立柱外板损伤变形的时历,得到三种工况下半潜式平台可承受的极限撞击动能如表5所示,在case 2中,因为计算停止时立柱外板仍未发生破裂破坏,故可认为此工况下半潜式平台可承受的极限撞击动能大于计算停止时半潜式平台所转化的撞击动能。由表5可知,半潜式平台可承受的极限撞击动能与立柱承受撞击的位置有关。在位置1和位置3,立柱的结构强度强于位置2,碰撞过程中存在横向水平舱壁和垂向舱壁对船体运动的联合抵抗作用,但半潜式平台可承受的极限撞击动能却小于位置2。这说明,提高半潜平台立柱某些构件的刚度,并不一定能够提高其结构抗撞性能,反而会引起外板结构的提前破裂。因而在设计和建造半潜式平台时,在保证平台整体强度的前提下,可适当对立柱上位置1和位置3处的结构设计进行一定的优化,减小舱壁的刚度,这样不但可以降低建造成本,还可以提高立柱的结构抗撞性能。
结构吸能特性反映了结构的碰撞特性。半潜式平台立柱发生塑性变形吸收的能量主要由平台立柱外板、水平框架结构、横向舱壁和纵向舱壁等吸收。不同工况下各部分结构吸收的能量及其占立柱吸收的总变性能的比例如表6所示。外板和水平框架是平台立柱吸收塑性变形能的主要构件,尤其是在case 2中,外板吸收的塑性变形能占立柱吸收的总塑性变形能的71.2%,横向舱壁和纵向舱壁吸收的变形能可以忽略。而舱壁对变形能的吸收由立柱上的撞击位置决定,在位置1,纵向舱壁为吸收塑性变形能主要构件,横向舱壁吸收变形能较少;在位置3,横向舱壁为吸收塑性变形能的主要构件,纵向舱壁吸收塑性变形能较少;在位置2,横向舱壁与纵向舱壁吸收变形能均可以忽略。
图4 碰撞力-撞深曲线Fig.4 Curves of collision force vs.penetration and distortion energy of semi vs.penetration
碰撞力-撞深曲线是结构本身的固有特性,在碰撞过程的不同阶段,碰撞力表现出不同程度卸载现象,碰撞力的每一次卸载代表了某种构件的失效或破坏。图4是船舶与半潜式平台碰撞过程中的碰撞力-撞深曲线。船舶与半潜式平台碰撞过程可以分为两个阶段。
第一阶段:球鼻艏与立柱开始接触到船首上部与立柱发生接触前,在此阶段,碰撞力主要由球鼻艏与立柱的接触作用产生。碰撞力的卸载反映了平台立柱结构件的失效或破坏,图4中A1,A2,A3分别对应case 1,case 2和case 3中横向水平框架的屈曲失效,B1和B3对应了case 1和case 3中垂向舱壁的屈曲失效,C1和C3分别对应了case 1和case 3中的立柱外板的膜拉伸破裂,C2点对应了case 2中立柱横向框架的压溃失效。详细分析图4可知,碰撞力-撞深曲线的变化受结构物撞击位置的影响。在case 1中,碰撞力-撞深曲线表现出很强的非线性,随立柱水平框架,垂向舱壁和外板的失效或破坏,碰撞力表现出明显的振荡变化;在case 2中,立柱外板的压溃失效发生在船首上部与立柱外板接触时,因而碰撞力-撞深曲线在撞深小于3 m时表现出一定的线性;在case 3中,由于位置3处立柱垂向舱壁与外板的接触面积小于位置1,其结构强度弱于位置1,故而碰撞力-撞深曲线的变化趋势介于case 1和case 2之间。另外还可明显看出,位置1和位置3处的碰撞力峰值基本相等,略大于位置2,这表明在仅有球鼻艏碰撞作用时,碰撞位置对碰撞力峰值的影响较小。
第二阶段:船首上部与立柱发生接触开始到计算停止,在此阶段,球鼻艏与船首上部均与平台立柱发生碰撞接触,总碰撞力是船首上部碰撞力与船首下部碰撞力的叠加,。由图4可知,船首下部碰撞力逐渐减小,船首上部碰撞力逐渐增大,计算停止时,船首上部对总碰撞力的贡献大于球鼻艏;总碰撞力表现出复杂的非线性,并且其变化趋势与船首上部碰撞力基本相同,表明此阶段碰撞力的卸载主要反映了船体结构的失效。另外,在此阶段,不同工况下的碰撞力峰值表现出较大不同,表明在船首上部与球鼻艏与平台立柱同时发生作用时,撞击位置对碰撞力峰值影响较大。
将不同撞击位置条件下撞击船正向撞击半潜式平台立柱时的最大碰撞力绘制在同一图上,结果如图5所示,其中撞击位置用角度表示,90°表示撞击位置1,135°表示撞击位置2,180°表示撞击位置3。由图5可以看出,船首下部碰撞力最大值出现在碰撞过程第一阶段,船首下部最大碰撞力随撞击位置变化较小;船首上部碰撞力最大值出现在碰撞过程第二阶段。
结构吸收塑性变形能-撞深曲线是表明了结构抗撞性能的优劣,是结构碰撞力-撞深曲线的间接反映,从图6中半潜式平台吸收塑性变形能-撞深曲线可以明显看,出在相同撞深条件下,在case 1中半潜式平台吸收的塑性变形能最多,case 3中次之,case 2中最少,这与参加变形及能量吸收的平台立柱构件数量和体积不同相关。
5 结论
(1)碰撞过程中结构损伤变形具有明显的局限性,主要集中在碰撞接触区域,改善船舶与半潜式平台碰撞性能时应重点关注易发生碰撞的薄弱区域,提高薄弱区域局部结构强度。在保证立柱结构强度和刚度的条件下,优化立柱结构,可以延迟高能量撞击情况下外板破裂的时间。
(2)半潜式平台所能承受的撞击动能存在极限值,极限值的大小与撞击位置有关。撞击位置影响半潜式平台抗撞性能。在低能量撞击且外板不破裂情况下,在撞击位置1半潜式平台所表现出的抗撞性能最佳,位置3次之,位置2最差。在高能量撞击导致外板破裂情况下,位置2的外板破裂时间最晚,抗撞性能反而比较理想,这与根据外板破裂时间定义的极限状态直接相关。
(3)撞击位置对碰撞力峰值有影响,在碰撞的不同阶段,其影响程度有所不同。
(4)撞击船的动能绝大部分被半潜式平台立柱的塑性变形所吸收,剩余的能量主要转化为撞击船的塑性变形能和受撞平台刚体运动所消耗的能量较少,这是因为碰撞过程中运动存在滞后现象。
(5)立柱外板和水平框架结构是半潜式平台吸收塑性变形能的主要构件,舱壁对塑性变形能的吸收受撞击位置的影响比较明显。
[1] 龚顺风,金伟良,王全增.海上固定平台受损构件的修理与评估[J].中国海洋平台,2001,16(2):37-41.
[2] 金伟良,宋 剑,龚顺风,等.船舶与海洋平台撞击的荷载模拟[J].计算力学学报,2003,21(1):26-32.
[3] Amaral Amante D D,Trovoado L,Estefen S F.Residual strength assessment of semi-submersible platform column due to supply vessel collision[C].Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering,OMAE 2008:779-789.
[4] Hu Z Q,Yang J M,Xiao L F.Global strength assessment for semi-submersible column after supply vessel collision accident[C].Proceedings of the 28th International Conference on Offshore Mechanics and Arctic Engineering,OMAE 2009-20253.Honolulu,Hawaii,USA.
[5] 江华涛,顾永宁.油轮艏部结构碰撞特性研究[J].上海交通大学学报,2003,37(7):985-989.
[6] 江华涛,顾永宁.整船碰撞非线性有限元仿真[J].上海造船,2002(2):16-21.
[7] Biehl F,Lehmann E.Collision of ships with offshore wind turbines:calculation and risk evaluation[C]. 4th International Conference on Collision and Grounding of Ships,2007,Hamburg,Germany.
[8] Hong L,Amdahl J.Strength design of FPSOs against supply vessel bow collision[C].4th International Conference on Collision and Grounding ofShips, 2007, Hamburg,Germany,2007.
[9] Chung P W,Kumar K T,Namburu R R.Asymptotic expansion homogenization for heterogeneous media:computational issues and applications[J].Composites Part A:Applied Science and Manufacturing,2001,32:1291-1301.
[10] MSC.Dytran user’s manual[M].Version 4.7,1999.