关于丢番图方程(12n)x+(35n)y=(37n)z
2012-07-05杨志娟翁建欣
杨志娟,翁建欣
(安徽师范大学数学系,安徽 芜湖 241003)
关于丢番图方程(12n)x+(35n)y=(37n)z
杨志娟,翁建欣
(安徽师范大学数学系,安徽 芜湖 241003)
运用同余及元素阶的性质,证明对任意正整数n,丢番图方程
仅有正整数解(x,y,z)=(2,2,2).
Je´smanowicz猜想;丢番图方程;同余
1 引言
2 引理及定理 4的证明
致谢感谢导师汤敏教授在论文撰写过程中给予的精心指导.
[1]Sierpi´nski W.On the equation 3x+4y=5z[J].Wiadom.Mat.,1955/1956,1:194-195.
[2]Je´smanowicz L.Several remarks on Pythagorean numbers[J].Wiadom.Mat.,1955/1956,1:196-202.
[3]Deng Moujie,Cohen G L.On the conjecture of Je´smanowicz concerning Pythagorean triples[J].Bull.Aust. Math.Soc.,1998,57:515-524.
[4]Le Maohua.A note on Je´smanowicz conjecture concerning Pythagorean triples[J].Bull.Aust.Math.Soc., 1999,59:477-480.
[5]关文吉.关于商高数的Je´smanowicz猜想[J].纺织高校基础科学学报,2011,24(4):557-559.
[6]Yang Zhijuan,Tang Min.On the Diophantine equation(8n)x+(15n)y=(17n)z[J].Bulletin of the Australian Mathematical Society,2012,86(2):348-352.
[7]陆文端.关于商高数组4n2−1,4n,4n2+1[J].四川大学学报:自然科学版,1959,2:39-42.
On the Diophantine equation(12n)x+(35n)y=(37n)z
Yang Zhijuan,Weng Jianxin
(School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)
Using the properties of congruences and the order of elements,we show that,for any positive integer n,the Diophantine equation(12n)x+(35n)y=(37n)zhas no solution other than(x,y,z)=(2,2,2)in positive integers.
Je´smanowicz conjecture,Diophantine equation,congruence
O156
A
1008-5513(2012)05-0698-07
2012-05-14.
国家自然科学基金(10901002);安徽省自然科学基金(1208085QA02).
杨志娟(1987-),硕士生,研究方向:组合数论.
2010 MSC:11D61