APP下载

论高等代数的教与学

2012-04-29郭素霞

考试周刊 2012年71期
关键词:习题课代数习题

郭素霞

摘要: 高等代数是理工类专业的一门基础课。由于其相对的抽象性,相当一部分学生对该课程的学习有畏难情绪,缺乏学习积极性,为了改善这种局面,作者从教与学两个方面提出对策。

关键词: 高等代数教学学习记忆

高等代数是理工类专业的一门基础课,其解决问题的思想和方法被越来越多的学科所借鉴。但是在大多数高校,该课程开设在第一学年。对于许多新生而言,本身就面临学习环境、学习方法和考试方式等多种变化的不适应。所以,对于较为抽象的高等代数的学习往往有望而却步的感觉。学生反映,上课我听懂了,课下也看明白了,遇到具体题目就不会做了。针对此种情况,我谈谈高等代数教与学的体会。

一、高等代数教学

高等代数课程具有高度的概括性和抽象性,且有概念多、定理多、证明多、作业多的特点。根据这些具体问题,教学中要注意以下几个方面。

1.注意首次课堂教学,让学生认识到学习高等代数的重要性。

学习需要动力,动力来源于对所学知识的兴趣。对于刚刚步入大学校门的新生而言,他们对高等代数的学科特点、应用领域等都不甚了解。教学中,常常有学生问道:“老师,学习高等代数有什么意义?这些知识用在哪些方面?”教师对这些问题的回答,直接影响学生学习该课程的兴趣。要解决好这一问题,高等代数的第一次课堂教学尤为重要。教师必须通过实例充分介绍相关知识,如应用领域、知识背景、课程特点、具体要求等,极大地调动学生的学习兴趣。且在后继的教学中,时刻注意联系知识背景,联系数学史知识,不断丰富学生的代数知识,不断提高学生学好高等代数的积极性。

2.注意联系实际注意抽象问题的具体化。

高等代数课程较其他专业基础课,更为抽象,课堂教学多为理论推导证明。教学过程中,教师必须注意证明思路的条理性和逻辑性,注意使用语言的准确性和生动性,注意转移难点,将抽象问题具体化。注意启发,营造良好的课堂氛围,使学生始终处于积极思考的状态。另外,教师必须注意理论联系实际,以实际的例子或具体的解题应用弥补理论推导的枯燥性,从而吸引学生,保持学生的学习兴趣。

3.注意概念教学。

数学概念是客观事物的数量关系和空间形式的本质属性的反映,是学习数学理论和构建数学框架的基石。对数学概念的理解与掌握,既是正确思维的前提,又是提高解决数学问题能力的必要条件。高等代数中概念极多,故重视概念教学,挖掘概念的内涵与外延,对于学生理解概念,掌握知识尤为重要。教师必须认真体会概念,选择合适的引入方式,才能有利于学生真正理解和掌握概念。

4.分层次布置,作业认真批改作业。

习题的布置不要搞题海战,要有选择、有针对性地进行分层处理。既要让接受快的同学发展个性,又要给理解慢的同学提供参与的机会,使所有同学都有成就感,树立学生解题的必胜信心,保持学生的学习积极性。作业批改不是简单的判断正误,是课堂之外与学生交流的又一个直接的平台,带着感情去写好学生的作业批语,可有效地调动学生的学习积极性,使他们逐渐克服学习上的畏难情绪。

5.重视习题课教学。

习题课不是单纯地做一些习题,它是数学教学的一个重要环节,对于抽象的高等代数而言,其重要性更是显而易见。不仅能使学生温故知新,查漏补缺,更能使学生完善代数知识系统,深化对代数知识体系的理解,做到融会贯通,提高应用和解决问题的能力。习题课要注意两点。

(1)习题要认真筛选,精心安排。要有典型性,针对掌握不牢的知识点,针对学生犯错误的知识点,针对学生理解不全面的知识点等对习题进行精选讲解。

(2)重视解题的分析过程,对题目所涉及的内容和相关知识进行系统归纳,要引导学生反思与总结,进一步巩固所学知识,开拓解题思路,且充分发挥学生的主体作用,相互交流达到知识互补。

一节好的习题课,既能强化学生对理论知识的学习,培养学生逻辑推理、归纳、批判等思维的能力,更能强化学生分析问题和解决问题能力的培养,对提高学生的数学素质有着重要的作用。

二、高等代数学习记忆

高等代数的学习中有大量的概念、定理、众多的结论,学习的过程是一个相当艰苦的过程。要充分掌握这些知识,一刻也离不开记忆。我从教学实践出发,探讨几种学习记忆的方法。

1.静心学习记忆。

学习记忆要有一定的环境,学习记忆的方法也因人而异。但无论采用怎样的学习记忆方式,必须做到心静,只有心静才能集中注意力。人们常说“一心不可二用”,有一个平静的心态,耐得住寂寞,是学好代数的基本条件。

2.理解学习记忆。

学习高等代数的定义、定理,不能死记硬背,要靠理解去记忆。高等代数的任何一个概念、定理的建立及证明,都处于严密的逻辑体系中。因此,对于知识的理解和记忆,必须弄清知识的逻辑联系,把握来龙去脉。对所学知识不仅要了解它是什么,还要知道为什么,这样有意识地进行学习记忆,才能牢固地掌握大量的概念、大量的定理、众多的结论。

3.系统学习记忆。

按照知识的系统性,将知识进行恰当地分类,将其条理化,编织成一个知识的大网。这样,学习记忆的不是零星片面的知识,而是一棵知识的大树。运用比较的形式,抓住知识大树的主干,把具有内在联系的重要概念,定理或章节串成一个整体。如,整数的整除性与多项式的整除性讨论,其基本思想、概念、定理基本相同,但是概念、定理相当多。若机械学习记忆,则很难掌握。而将它们比较编串成网,则条理清晰,易于学习记忆。

4.勤学多练学习记忆。

高等代数的内容多,概念、定理错综复杂。某些概念、定理在学习过程中理解了,过一段时间又忘记了,甚至有学后忘前的现象,这是常见的问题。学习高等代数不做一定量的习题,单靠死记硬背,是很难取得好的成绩的。多看、多练才能加深、巩固记忆。如同结识一个好朋友,初次相见无印象,第二次见面点点头,再见面时握握手,学习也如此,所谓“熟能生巧,忘也忘不了”。当然,题海战术不可取,应选择有代表性的问题练习。

5.交替学习记忆。

学习讲究持之以恒,但要注意不能认死理,思维受阻要转向,有利于大脑的记忆和休息。将数学分析、解析几何、高等代数不同的学科交替学习记忆,有利于思维的灵活性、开阔性,从而达到事半功倍的效果。

学习高等代数应该说“有法”又“无法”,因人而异。这个过程是一个艰苦的过程,但绝不是枯燥无味的。

“代数是搞清楚世界上数量关系的智力工具”,当你真正置身于高等代数的“海洋”中,你会找到无穷的乐趣。

猜你喜欢

习题课代数习题
从一道课本习题说开去
一道课本习题及其拓展的应用
抓住习题深探索
两个有趣的无穷长代数不等式链
Hopf代数的二重Ore扩张
实现课堂高效的初中化学习题课教学策略
什么是代数几何
高效课堂之高中数学习题课初探
精心设计习题 构建高效课堂
差错是习题课的有效资源