浅议输配电线路防雷保护
2012-04-23吴旋王志高飞程金国崔春悦
吴旋 王志 高飞 程金国 崔春悦
【摘要】输电线路雷击跳闸率较为突出,严重威胁电网安全,因此寻求有效的线路防雷保护措施,对保证线路安全稳定经济运行非常重要。本文通过对输电线路雷击闪络跳闸产生的原因进行了分析,并探讨线路综合防雷的相关措施。
【关键词】输配电线路防雷保护
中图分类号:U463.62 文献标识码:A 文章编号:
现代电力系统中,雷害事故引起的跳闸占有很大比例,统计数据显示在雷灾严重地区由雷灾引起的输电线路跳闸事故达到或超过总跳闸事故的1/3。输电线路的雷电流高达数十安乃至数千安,足以引起巨大的电磁效应、机械效应和热效应,威胁着人员、设备和电网的安全,因此雷雨活跃地区普遍将防雷工作作为安全工作的重中之重。
一、雷电对于输电线路的危害
从输电线路以及电网的安全考虑,雷电的危害主要体现在两个方面:一是雷电放在输电线路上,会引起很高的过电压,导致继电保护动作跳闸,切断运行线路造成巨大损失;考验周围设备的绝缘水平和耐受能力,对人员、设备造成威胁。二是雷电带来巨大电流施加在输电线路上,导致雷电击中点炸毁、燃烧使导线损毁或熔断,巨大电流产生的强大电动力还会造成杆塔等电力设备的机械损伤。
雷电导致的灾害往往不能通过电力系统自身的修复能力自动恢复,造成设备损坏更是需要一定时间和力量进行检修处理。雷电发生集中在春季和夏季,正是生产集中的时期,这一时期的电力中断将会造成极大的经济损失。雷电天气发生在夜晚、环境恶劣地区的可能性较大,更增大了检修的难度。此外,运行中的输电线路比不带电的输电线路遭受雷击的可能性更大。我国每年都有大量因雷电导致停电事故的报道,有效的防雷可以避免这些事故的发生,对于减少经济损失和提高电网安全可靠运行水平具有极其重要的意义。
二、雷击线路跳闸原因分析
架空输电线路雷害事故的形成通常要经历这样4个阶段:①输电线路受到雷电过电压的作用;②输电线路发生闪络;③输电线路从冲击闪络转变为稳定的工频电压;④线路跳闸。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”:①防直击,就是使输电线路不受直击雷。采取的主要措施是沿线路装设避雷线。②防闪络,就是使输电线路受雷后绝缘不发生闪络。采取的措施是加强线路绝缘、降低杆塔的接地电阻、架设耦合地线等。③防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧,采取的措施是系统采用消弧线圈接地方式、在线路上安装避雷器等。④防停电,就是使输电线路建立工频电弧后不中断电力供应。采取的措施是装设自动重合闸装置、双回路线路采用差绝缘方式等
三、输电线路防雷措施
对于线路防雷工作,采取各种有效措施,为线路设置一道道有力的屏障,防止雷电波的侵入,提高线路的耐雷水平,避免或减少线路绝缘发生闪络,从根本上降低雷击跳闸率。结合公司线路运行实际状况,提出以下防雷措施。
1、开展雷电参数的分析工作
结合输电智能巡检系统科技项目的实施,对公司的110 kV及以上输电线路杆塔均实现GPS卫星定位,并将数据输入雷电定位系统中去。今后凡是地区内出现雷电日时,都可及时查询输电线路附近雷电活动情况,进行雷电活动参数的分析,以确定线路可能遭受雷击的几率,划分出输电线路遭受雷害的等级,并采取相应的防雷措施。
2、降低杆塔接地电阻
降低杆塔接地电阻是最直接、最有效的防雷措施之一。接地电阻阻值的高低是影响杆(塔)顶电位高低的关键性因素。接地电阻越小,雷击时杆(塔)顶电位就越低,对线路造成的过电压也就越小,从而使线路的耐雷水平得到提高。
3、提高线路耐雷水平,加强线路绝缘
绝缘子性能的优劣将直接影响到线路的绝缘水平。线路运行单位应加强对绝缘子的全过程管理,加大对绝缘子的检测力度,严把质量检验关,防止劣质绝缘子挂网运行。对于已经挂网运行的绝缘子,应严格按照《架空送电线路运行规程》的规定,定期对零、低值绝缘子进行检测,对不合格的应及时更换,并对绝缘子的劣化率进行统计和分析,确保线路绝缘始终满足运行要求。此外,对于个别特殊区段和一些雷击频繁地区,可采取一些有针对性的措施,适当加强线路的绝缘配合,以提高其耐雷水平。
通常情况下110 kV线路单串悬垂绝缘子串的绝缘子为7片,单串耐张绝缘子串的绝缘子为8片,基本能满足防雷要求。但为了进一步增强线路的耐雷水平,提高绝缘子串承受的50%冲击放电电压值,每串绝缘子串可适当增加1片。实践证明,一些增加了1片绝缘子的新线路投入运行后,耐雷水平大大增强,很少发生雷击跳闸事故。
合成绝缘子以其重量轻、强度高、免维护、防污性能好等特点深受一些线路运行单位的青睐,广泛使用于线路的不同区段。但运行经验表明,在多雷区使用合成绝缘子,往往容易造成雷击跳闸事故。究其原因,合成绝缘子虽有上述优点,但其缺点也是显而易见的,如常规尺寸的合成绝缘子的防雷性能较差,110 kV线路上的合成绝缘子雷电全波冲击耐受电压仅有500 kV,而相同电压等级线路上的瓷绝缘子雷电全波冲击耐受电压却高达600 kV,比合成绝缘子高出20%。
4、装设避雷线
避雷线又名架空地线,主要对导线起屏蔽作用,用来分流雷电流,避免雷电直击导线。避雷线敷设于导线上方,一般沿全线架设,保护范围成带状,最适合保护导线,因此常常在线路上作为防雷的主保护。一般来说,110 kV线路应沿全线架设单避雷线,雷电活动频繁地区应架设双避雷线,35 kV线路一般不沿全线架设避雷线,但应在变电所进出线1~2 km架设避雷线。通过将架设避雷线和降低杆塔接地电阻,将这两种方法有机地结合起来,能最大程度地泄导直击杆(塔)顶的雷电流,避免线路发生闪络。
对于已经装设了避雷线的线路,其接地电阻受条件限制很难降低时,可在导线下方增加一条架空地线,称为耦合地线。耦合地线虽然不能减少绕击率,但在雷电直击杆(塔)顶和反击线路时,能增大对相邻杆塔的分流系数和导、地线间的耦合系数,从而保护线路不发生闪络。一些经常遭受雷击的线路在加装了耦合地线后,线路雷击跳闸率降低了一半左右。
5、加装避雷针
对于一些雷电频繁活动区段,可在杆顶加装避雷针。避雷针不能避雷,只能引雷。雷云放电时,避雷针的针尖将成为感应电荷的焦点,雷电流沿着放电通道对避雷针进行主放电,并迅速泄导入大地,保护线路不发生闪络。在防止绕击雷方面,通常在绕击雷活动频繁区段加装负角保护针,该保护针为上翘30°长约2.4m的屏蔽针,安装在线路两边相,可有效防止雷电绕击,它与架设在导线上方的避雷线(避雷针)相互配合,截断直击雷和绕击雷效果显著,起到了很好的屏蔽效果。
6、加强输电线路保护角的校验工作
根据雷电活动情况,对雷电活动频繁的山区线路进行保护角的校验工作,对于线路保护角偏大的杆塔,应采取安装避雷器或避雷侧针的措施以减少线路发生雷击故障。
7、装设线路自动重合闸装置
输电线路遭受雷击跳闸一般都是瞬时性接地故障,大多数情况下都能在线路跳闸后自动重合成功,因此,装设线路自动重合闸装置,可提高线路的供电可靠性。
总结
输电线路的防雷并不只是以上一些措施就能彻底解决的,雷电活动是一个复杂的自然现象,需要电力系统内各个部门的通力合作,综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件并参考当地原有线路的运行经验,经过技术经济比较,采取合理的保护措施。同时不断积累运行管理经验,加强线路运行维护,才能尽量减少雷害的发生,将雷害带来的损失降低到最低限度。
参考文献
[1] 郭春宇. 浅析送电线路的防雷措施[J]. 民营科技. 2009(10)
[2] 郭兆华. 关于输电线路防雷措施的综合探讨[J]. 广东科技. 2010(10)
[3] 陈波. 论述架空输电线路防雷击措施[J]. 中国新技术新产品. 2011(03)