甜菜褐斑病菌抗药性分子机理研究进展
2012-01-22吴学宏韩成贵
林 杰,刘 梅,吴学宏,韩成贵
(中国农业大学植物病理学系,北京100193)
甜菜是世界两大糖料作物之一,在农业生产中占有重要地位[1]。目前我国甜菜种植主要集中在东北、华北和西北三大产区[2]。由甜菜尾孢菌(Cercospora beticola)引起的甜菜褐斑病是甜菜生产上最重要的叶部真菌病害[3-4],致使叶片大量坏死及新叶的再生而消耗了甜菜块根中的营养物质,造成产量和含糖的下降[5],病害严重时甚至亦可危害块根[6]。一般年份可使甜菜块根减产10%~20%,含糖率降低1~2度,严重时甚至造成整个田块绝收[7]。
目前生产主要采用抗病品种、轮作和化学防治控制甜菜褐斑病[8-9],但由于生产中不合理地使用农药,导致甜菜尾孢菌对多种杀菌剂的敏感性下降,对部分杀菌剂产生了较高的抗药性,成为生产上亟待解决的难题[9]。
1 甜菜褐斑病化学防治的主要药剂及作用机制
防治甜菜褐斑病的杀菌剂有保护类杀菌剂和内吸性杀菌剂,其中保护性杀菌剂主要有二硫代氨基甲酸盐类、有机锡类;内吸性杀菌剂主要有苯并咪唑类、甾醇脱甲基化酶抑制剂和甲氧基丙烯酸类等[9]。
1.1 二硫代氨基甲酸盐类杀菌剂
二硫代氨基甲酸盐类杀菌剂为多作用位点的保护性杀菌剂,包括代森锰锌(Mancozeb)和代森锌(Zineb)等。药剂在水中降解释放出活性物质Ethylene bisisothiocyanate sulfide(EBIS),该活性物质在紫外线作用下可转化为Ethylene bisisothiocyanate(EBI),EBIS和EBI均能破坏部分含巯基的酶的活性,干扰或抑制病原菌细胞质和线粒体中6种不同生物化学途径,从而有效地防治病害[10-11]。
1.2 有机锡类杀菌剂
有机锡类杀菌剂包括毒菌锡(Fentin-hydroxide)和薯瘟锡(Fentin-caetate)等,为线粒体呼吸抑制剂,干扰线粒体膜上电子氢氧根离子交换,抑制ATP酶活性,破坏病原菌的呼吸作用,影响孢子萌发或菌丝生长[12]。
1.3 苯并咪唑类杀菌剂
苯并咪唑类杀菌剂为第一大类内吸性杀菌剂,包括苯菌灵(Benomyl)、多菌灵(Carbendazim)和甲基托布津(Thiophanate-methyl)等。与植物次生代谢产物秋水仙碱极为相似,活性基团苯并咪唑能特异地与病原菌细胞中纺锤丝的β-微管蛋白结合,阻碍微管蛋白形成,破坏纺锤丝形成,从而干扰细胞的有丝分裂,抑制芽管分隔、延长、分生孢子的萌发和菌丝生长,达到抑菌效果[13-14]。在我国,此类药剂用于防治甜菜褐斑病已有较长的历史,并且有些地区目前仍然在使用。
1.4 甾醇脱甲基化酶抑制类杀菌剂
甾醇脱甲基化酶抑制类杀菌剂(C14-demethylation inhibitors of sterol biosynthesis,DMI)为甾醇-14α去甲基化酶抑制剂,即,包括氟硅唑(Flutriafol)、苯醚甲环唑(Difenconazole)、氟醚唑(Tetraconazole)和丙环唑(Propiconazole)等。甾醇类化合物如麦角甾醇、菜子甾醇等是真菌细胞膜的主要组成成分,药剂靶标基因为甾醇-14α去甲基化酶基因(C-14α-demethylase gene,CYP51)通过抑制麦角甾醇合成过程中2,4-二氢羊毛甾醇的脱甲基化反应,破坏病原菌的甾醇生物合成途径,引起真菌生长紊乱[15-18]。我国近几年来开始大面积推广使用氟硅唑和苯醚甲环唑等杀菌剂防治甜菜褐斑病。
1.5 甲氧基丙烯酸酯类杀菌剂
甲氧基丙烯酸酯类杀菌剂为线粒体呼吸抑制剂,包括肟菌酯 (Trifloxystrobin)和吡唑醚菌酯(Pyraclostrobin)等,其研发源于担子菌如 Oudemansiella mucida (Schrad ex Fr)Hoehn和 Strobilurus tenacellus (Pers ex Fr)Singer及细菌Myxococcus fulvus等中一类天然活性产物β-丙烯酸酯类化合物的发现。1996年,先正达(Syngenta)推出了第一个商品化的丙烯酸酯类杀菌剂阿米西达(Azoxystrobin)。活性基团甲氧基丙烯酸(酯/酰胺)主要作用于真菌线粒体呼吸过程,与线粒体内膜上的细胞色素复合体bc1中的细胞色素b上的Qo位点结合,阻断了细胞色素b和细胞色素c1间的电子传递,破坏能量循环,抑制真菌孢子萌发或菌丝生长[19-21]。但此类药剂在我国尚未登记用于甜菜褐斑病的防治。
2 甜菜尾孢菌抗药性发生现状
2.1 二硫代氨基甲酸盐类杀菌剂
二硫代氨基甲酸盐类杀菌剂作用位点多,病原菌对其不易产生抗药性,是最早用于防治甜菜褐斑病的杀菌剂之一,其与有机锡杀菌剂混用防治甜菜褐斑病,能显著地提高产量和含糖率[22]。1995年,Bugbee建立了用于监测甜菜尾孢菌对代森锰锌抗药性的药剂浓度5和10 μg/mL[23]。1997年美国明尼苏达州和北达科他州田间调查没发现甜菜尾孢菌对代森锰锌的耐药性[24],而2000年发现明尼苏达州和北达科他州大部分地区甜菜尾孢菌对5 μg/mL代森锰锌产生了耐药性[25]。随后,土耳其亦发现了甜菜尾孢菌对代森锰锌的耐药性[26]。而我国目前没有甜菜尾孢菌对代森锰锌耐药性情况的相关报道,但仍需加强抗性监测。
2.2 对苯并咪唑类杀菌剂的抗药性
苯菌灵是第一个用于甜菜褐斑病防治的内吸性杀菌剂[9],至今已有40多年的历史。20世纪70年代,欧洲、北美洲等地就开始施用苯菌灵防治甜菜褐斑病并取得很好的防效,如希腊、美国北达科他和明尼苏达分别始于1969年、1979年[27,9,3]。但由于苯并咪唑类杀菌剂作用位点单一和大面积的施用,C.beticola很快就对其产生了抗药性,导致防治效果降低甚至完全丧失[27,9]。1973年,希腊首先报道了C.beticola对苯并咪唑类的抗药性[27]。随后美国、意大利、日本、印度和中国等甜菜主要种植地区均有报道[14,28-37]。C.beticola对苯并咪唑类杀菌剂抗药性可稳定遗传[38,9],如希腊自抗药性发现后就没有持续施用苯并咪唑类杀菌剂,但20多年后对多菌灵抗性频率没有降低反而极大地增加[9]。当然也不能排除在其他C.beticola侵染作物或杂草上应用所致。抗性和敏感菌株在无苯菌灵情况下,离体菌丝生长、孢子萌发和活体毒力及孢子萌发等生物学特性上均没有差异[28],虽然苯菌灵浓度增加,如1000 μg/mL,能降低田间病害严重度、孢子形成及孢子活力,但大剂量施用形成极大的选择压力,增大田间抗性菌株的抗药水平和抗性频率,不利于病害的管理[39]。
β-微管蛋白基因突变是对苯并咪唑类杀菌剂抗药性产生的主要原因。Davidson通过苯菌灵系列梯度抑菌试验得到了能有效地区分抗、感菌株的苯菌灵浓度,该浓度为5 μg/mL。并通过分析C.beticola抗、感菌株的β-微管蛋白基因,发现β-微管蛋白基因198位密码子GAG突变为GCG,编码的氨基酸由谷氨酸突变为丙氨酸,导致了C.beticola对并本咪唑类杀菌剂的高抗药性或耐药性的产生,同时发现C.beticola对多菌灵和乙霉威存在负交互抗药性[40],我们的初步结果与此一致[35]。基于抗感菌株序列差异,Obuya等设计了PCRRFLP分子检测方法,利用限制性内切酶Bsa I可区分C.beticola抗感菌株[41],而我们则建立了Allele specific primers-PCR快速检测区分C.beticola抗感菌株的方法(未发表),为检测田间抗性菌株提供了可靠的工具。
2.3 对有机锡类杀菌剂的抗药性
继C.beticola对苯并咪唑类杀菌剂抗药性产生后,生产上采用有机锡类杀菌剂如毒菌锡防治甜菜褐斑病并取得了较好的防治效果[42-43,3],但随后不久,希腊田间生产中发现C.beticola对毒菌锡产生了耐药性,导致防效下降[44],同时世界主要甜菜产区美国、意大利、土耳其等都相继发现C.beticola对有机锡杀菌剂的抗药性[23,26,42,45-46]。研究发现,对毒菌锡抗性的C.beticola菌株在离体情况下与野生型菌丝生长速率和菌落特征均没有差异,但毒力存在差异,抗性菌株生存竞争力较弱,因此合理施用有机锡杀菌剂可降低抗性菌株的频率[47]。
2.4 对甾醇脱甲基化酶抑制类杀菌剂的抗药性
鉴于C.beticola对苯并咪唑类杀菌剂和有机锡杀菌剂的抗药性,DMI因其对甜菜褐斑病具有良好的保护性和治疗性而应用到甜菜褐斑病的防治中[48],如希腊于1979年开始利用DMI类杀菌剂防治甜菜褐斑病[9,49],而美国环保局(Environmental Protection Agency,EPA)于1999年至2004年间实施了利用非登记的DMI类杀菌剂氟醚唑防治甜菜褐斑病的紧急方案,2005年氟醚唑登记防治甜菜褐斑病。随后,腈苯唑和丙环唑于2006年登记,苯醚甲环唑和丙硫菌唑于2008年登记[3],但由于DMI杀菌剂作用位点特异性极强,致使病原菌较易对其产生抗药性[50],希腊首先发现田间C.beticola种群对DMI类杀菌剂敏感性下降[48,51],敏感性水平呈持续分布状[52],随后在希腊发现C.beticola对DMI杀菌剂抗药性菌株[43,51],Karaoglanidis等根据菌丝生长抑制率的结果,建立1 μg/mL氟硅唑和0.05 μg/mL苯醚甲环唑的单浓度药剂监测田间抗感菌株频率的方法[53]。
生物学研究发现,DMI抗性菌株的毒力和产孢量弱于敏感菌株,但菌丝生长速度、孢子萌发和芽管长度等没有差异[54-55]。Karaoglanidis等发现当无氟硅唑处理时,DMI抗性和敏感菌株细胞膜中甾醇组成相同;氟硅唑处理后,C.beticola 脱甲基甾醇(desmethyl sterols)含量降低而齿孔醇(eburicol)、钝叶醇(obtusifoliol)等含量增加,表明C.beticola抗感菌株的14α-脱甲基化酶活性均受到抑制。而抗性菌株在高浓度的氟硅唑处理时,虽然C-14甲基化甾醇含量增加,但仍能合成C14-甲基化甾醇从而否定了甾醇C-14脱甲基酶缺乏导致抗药性产生的原因。同时氟硅唑处理C.beticola菌株时,没有发现14α-methylfecosterol而排除了14αmethylfecosterol积累导致抗药性产生的机制。根据以上发现,其推测C.beticola对甾醇脱甲基化酶抑制剂抗性机制可能是14α-脱甲基化酶过量或细胞色素P450与药剂亲和性降低[56]。Nikou等首次报道了C.beticola CYP51基因序列,实时荧光定量分析发现CYP51基因过量表达导致了C.beticola对DMI类杀菌剂抗药性的产生,同时发现高抗菌株的第169位密码子均发生了沉默突变,由GAA突变为GAC,根据该沉默突变设计了PCR-RFLP分子检测方法,利用限制性内切酶BsmAI可区分C.beticola高抗菌株[57]。
2.5 对甲氧基丙烯酸酯类杀菌剂的抗药性
甲氧基丙烯酸酯类杀菌剂如吡唑醚菌酯和肟菌酯具有极佳的保护和治疗活性,能有效地抑制C.beticola孢子萌发、菌丝生长和孢子产生,离体情况下0.01 μg/mL吡唑醚菌酯和0.1 μg/mL肟菌酯能完全抑制孢子萌发[58]。研究发现,甲氧基丙烯酸酯类杀菌剂防治甜菜褐斑病的效果,肟菌酯>吡唑嘧菌酯>阿米西达,尤其阿米西达防治效果仅为中等或较差,但阿米西达与代森锰锌、苯醚甲环唑或氟硅唑等混用效果明显好于阿米西达单独使用,而肟菌酯与代森锰锌、苯醚甲环唑或氟硅唑等混用效果与肟菌酯单独使用没有明显差异,但肟菌酯最佳施用期为病害发生早期[59]。
目前,甲氧基丙烯酸酯类杀菌剂作为甜菜褐斑病主要防治药剂之一,在世界各甜菜产国相继获得登记,如美国于2002、2003年分别登记批准肟菌酯和吡唑醚菌酯用于甜菜褐斑病的防治[3]。据报道,黄瓜白粉菌和霜霉菌[Blumeria(Erysiphe)graminis and Plasmopara viticola]等对甲氧基丙烯酸酯类杀菌剂产生了抗药性[60-62]。同时由于C.beticola基因变异大,极易对杀菌剂产生抗药性,因此必须加强对C.beticola对甲氧基丙烯酸酯类杀菌剂抗药性的研究和检测[63],通过室内紫外线诱导获得了对吡唑醚菌酯具有抗药性的甜菜尾孢菌突变菌株,抗性菌株较野生菌株产孢量和致病性下降,但抗药性可稳定遗传,分析细胞色素b的cDNA序列发现,第129位密码子由TTC突变为GTC,编码的氨基酸由苯丙氨酸突变为缬氨酸,导致C.beticola菌株对吡唑醚菌酯产生中等抗药性,而第143密码子由GGT突变为AGT,编码的氨基酸由甘氨酸突变为丝氨酸,导致了高抗药性的产生[63]。基于第143位密码子的突变而设计了allele specific primers-PCR分子检测抗药性菌株的方法,为了进一步提高检测灵敏度,建立了实时荧光定量PCR(Real-time PCR)检测低频率高抗菌株的方法,但通过对田间样品的检测,没有检测到高抗性菌株,表明7年前希腊引入甲氧基丙烯酸酯类杀菌剂防治甜菜褐斑病后,田间至今还没发现抗性菌株,说明甲氧基丙烯酸酯类杀菌剂可持续用于甜菜褐斑病的防治[64]。但仍需在世界范围内对C.beticola对甲氧基丙烯酸酯类杀菌剂抗药性进行深入研究和监测,避免和有效地延缓抗药性的产生,同时为治理可能出现的抗药性建立基础的理论支持。
3 抗药性治理
延缓和避免植物病原菌对杀菌剂产生抗药性是生产中亟待解决的问题,合理有效地施药及结合其他病害防治方法,建立科学的病害管理方案,有利于延缓和避免抗药性产生,提高病害防治效率,从而保障甜菜生产的经济效益。作用机制不同的杀菌剂混用或交替使用,限制作用机制类似或相同的杀菌剂在同一个生长季节的施药次数,按药剂推荐使用浓度,适时施药和减少用药次数可有效地治理病原菌的抗药性。甜菜褐斑病是一种多循环病害,C.beticola在一个生长季可发生多次侵染,田间条件下,孢子形成周期为12d[4],因此甜菜褐斑病的防治最佳时期为病害发生初期,当田间初现症状,病害日侵染率≥7%和相对湿度≥87%或90%时为最佳施药防治时期[65],利用甲氧基丙烯酸酯类杀菌剂如肟菌酯和吡唑醚菌酯能有效地治理C.beticola对苯并咪唑类杀菌剂的抗药性,降低抗性菌株的频率[9],同时结合抗病品种、轮作和农业措施等措施能减少初侵染源和初侵染,降低杀菌剂使用次数,可有效地延缓和避免抗药性的产生。研究发现,Bacillus subtilis菌株BacB[66]和甜菜褐斑病菌内生细菌多粘芽孢杆菌(Paenibacillus polymyxa)、弯曲芽孢杆菌(Bacillus flexus)、寡养单孢菌(Stenotrophomonas sp.)[67]对甜菜尾孢菌具有一定的防治效果,因此加大生物防治的研究,获得较好的生防菌株对治理甜菜尾孢菌对杀菌剂的抗药性具有重要的作用。
4 问题与展望
国内关于C.beticola对杀菌剂抗药性的研究极少,仅有早期关于甜菜褐斑病菌对苯并咪唑类杀菌剂的抗药性频率、抗性水平、交互抗性和抗性遗传等报道[32],对当前生产上主要使用新型杀菌剂如DMI类和甲氧基丙烯酸酯类杀菌剂的抗药性情况的研究处于起步阶段。而国外早在2000年就发现了甜菜褐斑病菌对DMI类杀菌剂的抗药性[51],及室内得到了对甲氧基丙烯酸酯类杀菌剂具有抗药性的菌株[63-64],因此尽快评估我国不同地区甜菜褐斑病菌对新型杀菌剂的抗性风险,建立其对新型杀菌剂的敏感基线,监测抗药性,探索甜菜褐斑病菌对新型杀菌剂的抗性机理,并制定合理延缓和避免抗药性产生的病害管理方案,延长杀菌剂使用寿命,为甜菜生产提供技术保障。
[1]Cooke D A,Scott R.The sugar beet crop:science into practice[M].London:Chapman and Hall,1993:14-19.
[2]张木清,王华忠,白晨.糖料作物改良与高效育种[M].北京:中国农业出版社,2006:30.
[3]Secor G A,Rivera V V,Khan M.Monitoring fungicide sensitivity of Cercospora beticola of sugar beet for disease management decisions[J].Plant Disease,2010,94(11):1272-1282.
[4]Weiland J,Koch G.Sugarbeet leaf spot disease(Cercospora beticola Sacc.)[J].Molecular Plant Pathology,2004,5:157-166.
[5]Shane W,Teng P.Impact of Cercospora leaf spot on root weight,sugar yield,and purity of Beta vulgaris[J].Plant Disease,1992,76:812-820.
[6]Giannopolitis C.Lesions on sugarbeet roots caused by Cercospora beticola[J].Plant Disease Reporter,1978,62:424-427.
[7]Rossi V,Asher M,Holtschulte B,et al.Cercospora leaf spot infection and resistance in sugarbeet[A].Cercospora beticola Sacc biology,agronomic influence and control measures in sugar beet[C],2000:17-48.
[8]Smith G.Differential response of sugarbeet cultivars to Cercospora leaf spot disease[J].Crop Science,1978,18:39-42.
[9]Karaoglanidis G,Bardas G.Control of benzimidazole-and DMI-resistant strains of Cercospora beticola with strobilurin fungicides[J].Plant Disease,2006,90:419-424.
[10]Ludwig R,Thorn G.Chemistry and mode of action of dithiocarbamate fungicides[J].Adv Pest Control Res,1960,3:219.
[11]Gullino M L,Tinivella F,Garibaldi A,et al.Mancozeb: Past,Present,and Future[J].Plant Disease,2010,94:1076-1087.
[12]Stockdale M,Dawson A P,Selwyn M J.Effects of Trialkyltin and Triphenyltin Copounds on Mitochondrial Respiration[J].European Journal of Biochemistry,1970,15(2):342-351.
[13]Davidse L.Benzimidazole fungicides:mechanism of action and biological impact[J].Annual review of phytopathology,1986,24:43-65.
[14]Davidse L.Benzimidazole fungicides:Mechanism of action and resistance[A].In C.J.Delp(ed.),Fungicide resistance in North America[C].APS Press,St.Paul,Minn,1988:25-27.
[15]BUCHENHAUER H.Mode of action and selectivity of fungicides which interfere with ergosterol biosynthesis[A].Proceedings of the 1977 British Crop Protection Conference-Pests and Diseases[C].British Crop Protection Council,London,1977:699-711
[16]Siegel M.Sterol-inhibiting fungicides:Effects on sterol biosynthesis and sites of action[J].Plant Disease,1981,65:986-989.
[17]Schwinn F J.Ergosterol biosynthesis inhibitors.An overview of their history and contribution to medicine and agriculture[J].Pesticide science,1984,15(1):40-47.
[18]Koller,W.Antifungal agents with target sites in sterol functions and biosynthesis.In Target Sites of Fungicide Action(Koller,W.,Ed.),CRC Press,Boca Raton,FL,1992:119–206.
[19]Anke T.The antifungal strobilurins and their possible ecological role[J].Canadian journal of botany,1995,73:940-945.
[20]Bartlett D W,Clough J M,Godwin J R,et al.The strobilurin fungicides[J].Pest Management Science,2002,58:649-662.
[21]思彬彬,杨卓.甲氧基丙烯酸酯类杀菌剂作用机理研究进展[J].世界农药,2007,29(6):5-9.
[22]Percich J,Nickelson L,Huot C.Field evaluation of various fungicides to control cercospora leaf spot of sugarbeet,caused by benomyl-resistant strains of Cercospora beticola[J].Journal of the American Society of Sugar Beet Technologists,1987,24(1):32-40.
[23]Bugbee W.Cercospora beticola tolerant to triphenyltin hydroxide[J].Journal of sugar beet research,1995,32:167-174.
[24]Weiland J J,Smith G.A Survey for the prevalence and distribution of Cercospora beticola tolerant to triphenyltin hydroxide and mancozeb and resistant to thiophanate methyl in 1997[R].Sugarbeet Research and Extension Reports,1997.
[25]Weiland J J.A survey for the prevalence and distribution of Cercospora beticola tolerant to triphenyltin hydroxide and mancozeb and resistant to thiophanate methyl in 2000[J].Sugarbeet Research and Extension Reports,2000,31:266-271.
[26]Tumbek A,Ozeren P,Kaya R,et al.Sensitivity of Cercospora beticola populations in Turkey to utriafol,mancozeb,and fentin acetate[J].Turk J Agric For,2011,35:65-71.
[27]Georgopoulos S,Dovas C.Occurrence of Cercospora beticola strains resistant to benzimidazole fungicides in northern Greece[J].Plant Dis Rep,1973,57:321-324.
[28]Ruppel E,Scott P.Strains of Cercospora beticola resistant to benomyl in the USA[J].Plant Dis Rep,1974,58:434-436.
[29]D'Ambra V,Mutto S,Carula G.Sensibilita e toleranza di isolati di Cercospora beticola sensibili e toleranti al benomyl[J].Ind Sacc Ital,1974,1:11-13.
[30]Ruppel E,Burtch L,Jenkins A.Benomyl-Tolerant Strains of Cercospora beticola from Arizona[J].The Journal of the American Society of Sugar Beet Technologists,1976,19(2):106-107.
[31]Yamaguchi T,Sugimoto T,Aota T,et al.Occurrence and spread of strains of Cercospora beticola Sacc.resistant to thiophanate methyl in Hokkaido,Japan,1975,17:71-79.
[32]黄大昉,王侠,周淑芝.甜菜褐斑病菌对苯并咪唑类杀菌剂抗药性的研究[J].植物保护学报,1982,9(2):131-136.
[33]Pal V,Mukhopadhyay A.Occurrence of strains of Cercospora beticola resistance to carbendazim(MBC)in India[J].Indian Journal of Mycology and Plant Pathology,1983,13:333-334.
[34]Weiland J J,Halloin J M.Benzimidazole resistance in Cercospora beticola sampled from sugarbeet fields in Michigan,USA[J].Canadian Journal of Plant Pathology,2001,23(1):78-82.
[35]林杰,刘梅,吴学宏,等.我国抗感多菌灵甜菜褐斑病菌菌株β-微管蛋白基因的序列分析[A].2011年中国植物病理学会年会论文集[C].湖北:中国农业科学技术出版社,2011:622-623.
[36]D'Ambra V,Mutto S,Carula G.Frequency of benomyl-tolerant isolates of Cercospora beticola as a result of field treatments and response of the isolates to triphenyltin acetate[J].Phytopathologische Zeitschrift,1980,97(3):234-241.
[37]刘勇,叶钟音,刘经芬,等.甜菜褐斑病菌对苯并咪唑类等杀菌剂抗药性的研究[J].中国糖料,1992(1):27-33.
[38]Ruppel E,Jenkins A,Burtch L.Persistence of benomyl-tolerant strains of Cercospora beticola in the absence of benomyl[J].Phytopathology,1980,70(1):25-26.
[39]Ruppel E,Petersen S.Effect of benomyl on In vitro and In vivo biology of benomyl-tolerant strains of Cercospora beticola[J].AMERICAN SOCIETY OF SUGAR BEET,1977,19(3):233.
[40]Davidson R,Hanson L,Franc G,et al.Analysis of β-tubulin Gene Fragments from Benzimidazole-sensitive and-tolerant Cercospora beticola[J].Journal of Phytopathology,2006,154:321-328.
[41]Obuya J,Hanson L,Stump W,et al.A rapid diagnostic tool for detecting benzhnidazole resistance in Cercospora beticola,the causal agent of Cercospora leaf spot in sugarbeet[R].Phytopathology,2008,98:S115.
[42]Campbell L,Smith G,Lamey H,et al.Cercospora beticola tolerant to triphenyltin hydroxide and resistant to thiophanate methyl in North Dakota and Minnesota[J].Journal of sugar beet research,1998,35(1-2):29-41.
[43]Karaoglanidis G,Karadimos D,Ioannidis P,et al.Sensitivity of Cercospora beticola populations to fentin-acetate,benomyl and flutriafol in Greece[J].Crop protection,2003,22(5):735-740.
[44]Giannopolitis C.Occurrence of strains of Cercospora beticola resistant to triphenyltin fungicides in Greece[Sugarbeets][R].Plant Disease Reporter(USA),1978.
[45]CeratoC,Grassi.Toleranceoforgano-tincompoundsamongCercosporabeticolaisolates[J].InformatoreFitopatologico,1983,33:67-69.
[46]Bugbee W.Cercospora beticola strains from sugar beet tolerant to triphenyltin hydroxide and resistant to thiophanate methyl[J].Plant Disease,1996,80:103.
[47]Giannopolitis C,Chrysayi-Tokousbalides M.Biology of triphenyltin-resistant strains of Cercospora beticola from sugar beet[J].Plant Disease,1980,64(10):940-942.
[48]Karaoglanidis G,Ioannidis P,Thanassoulopoulos C.Changes in sensitivity of Cercospora beticola populations to steroldemethylation-inhibiting fungicides during a 4-year period in northern Greece[J].Plant pathology,2002,51(1):55-62.
[49]Ioannidis P.Fungicides chemicals and techniques for controlling Cercospora beticola Sacc.In Greece.[C].Proceeding of Mediterranean Committee Meeting of I.I.R.B.Tbessaloniki,Greece,1994:139-151.
[50]Koller W.Fungicide resistance in plant pathogens[Z].CRC handbook of pest management in agriculture,1991,2:679-720.
[51]Karaoglanidis G,Ioannidis P,Thanassoulopoulos C.Reduced sensitivity of Cercospora beticola isolates to sterol-demethylationinhibiting fungicides[J].Plant pathology,2000,49:567-572.
[52]Wolfe M.Dynamics of the pathogen population in relation to fungicide resistance[A].Fungicide Resistance in Crop Protection[C].J Dekker and SG Georgopoulos,eds Centre for Agricultural Publishing and Documentation,Wageningen,the Netherlands,1982:139-148.
[53]Karaoglanidis G,Karadimos D,Ioannidis P.Detection of resistance to sterol demethylation-inhibiting(DMI)fungicides in Cercospora beticola and efficacy of control of resistant and sensitive strains with flutriafol[J].Phytoparasitica,2003,31(4):373-380.
[54]Henry M J,Trivellas A E.Laboratory-induced fungicide resistance to benzimidazole and azole fungicides in Cercospora beticola[J].Pesticide biochemistry and physiology,1989,35:89-96.
[55]Karaoglanidis G,Thanassoulopoulos C,Ioannidis P.Fitness of Cercospora beticola field isolates¨Cresistant and¨Csensitive to demethylation inhibitor fungicides[J].European journal of plant pathology,2001,107:337-347.
[56]Karaoglanidis G,Menkissoglu-Spiroudi U.Thanassoulopoulos C.Sterol Composition of DMI-Resistant and-Sensitive Field Isolates of Cercospora beticola[J].Journal of Phytopathology,2003,151:431-435.
[57]Nikou D,Malandrakis A,Konstantakaki M,et al.Molecular characterization and detection of overexpressed C-14 alpha demethylase-basedDMIresistanceinCercosporabeticolafieldisolates[J].Pesticidebiochemistryandphysiology,2009,95(1):18-27.
[58]Karadimos D.,Karaoglanidis G.,Tzavella-Klonari K.Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola[J].Crop protection,2005,24(1):23-29.
[59]Anesiadis T,Karaoglanidis G,Tzavella-Klonari K.Protective,curative and eradicant activity of the strobilurin fungicide azoxystrobin against Cercospora beticola and Erysiphe betae[J].Journal of Phytopathology,2003,151(11/12):647-651.
[60]Ishii H,Fraaije B,Sugiyama T,et al.Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew[J].Phytopathology,2001,91(12):1166-1171.
[61]Sierotzki H,Parisi S,Steinfeld U,et al.Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates[J].Pest Management Science,2000,56(10):833-841.
[62]Sierotzki H,Wullschleger J,Gisi U.Point mutation in cytochrome b gene conferringresistance to strobilurin fungicides in Erysiphe graminis f.sp.tritici field isolates[J].Pesticide biochemistry and physiology,2000,68(2):107-112.
[63]Malandrakis A A,Markoglou A N,Nikou D C,et al.Biological and molecular characterization of laboratory mutants of Cercospora beticola resistant to Qo inhibitors[J].European journal of plant pathology,2006,116(2):155-166.
[64]Malandrakis A A,Markoglou A N,Nikou D C,et al.Molecular diagnostic for detecting the cytochrome b G143S-QoI resistance mutation in Cercospora beticola[J].Pesticide biochemistry and physiology,2011,100(1):87-92.
[65]Khan J,Del Rio L E,Nelson R,et al.Improving the Cercospora leaf spot management model for sugar beet in Minnesota and North Dakota[J].Plant Disease,2007,91(9):1105-1108.
[66]Collins D P,Jacobsen B J.Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot[J].Biological control,2003,26(2):153-161.
[67]史应武,娄恺,李春,等.甜菜褐斑病内生拮抗菌的筛选、鉴定及其防效测定[J].植物病理学报,2009,39(2):221-224.