APP下载

电网与电力系统之间的相互性

2011-12-30杨晓霞

科学之友 2011年10期
关键词:波特率电表载波

杨晓霞

(云南建源电力设计有限公司,云南 昆明 650011)

电网对于电力系统的意义。①能有效地提高电力系统的安全性和供电可靠性。利用智能电网强大的“自愈”功能,可以准确、迅速地隔离故障元件,并且在较少人为干预的情况下使系统迅速恢复到正常状态,从而提高系统供电的安全性和可靠性。②实现电网的可持续发展。坚信智能电网建设可以促进电网技术创新,实现技术、设备、运行和管理等各个方面的提升,以适应电力市场需求,推动电网科学可持续发展。③减少有效装机容量。利用我国不同地区电力负荷特性差异大的特点,通过智能化的统一调度,获得错峰和调峰等联网效益;同时通过分时电价机制,引导用户低谷用电,减小高峰负荷,从而减少有效装机容量。④降低系统发电燃料费用。建设坚强智能电网,可以满足煤电基地的集约化开发,优化我国电源布局,从而降低燃料运输成本;同时,通过降低负荷峰谷差,可提高火电机组使用效率,降低煤耗,减少发电成本。⑤提高电网设备利用效率。首先,通过改善电力负荷曲线,降低峰谷差,提高电网设备利用效率;其次,通过发挥自我诊断能力,延长电网基础设施寿命。⑥降低线损。以特高压输电技术为重要基础的坚强智能电网,将大大降低电能输送中的损失率;智能调度系统、灵活输电技术以及与用户的实时双向交互,都可以优化潮流分布,减少线损;同时,分布式电源的建设与应用,也减少了电力远距离传输的网损。

现在在某些国家,以及将来的更多国家,绿色能源对于电网的贡献会越来越大。它在电网中所占的比率,由原来5%的水力发电,上升到有40%是太阳能和风能发电。在大部分绿色电能中,调节器要进行的控制很少。此外,电动交通工具也加入了变革的队伍。电动交通工具的大规模推广,将使电网的用电量加倍,并大规模地带来了超大储电能力。用电量的上升、绿色电能的推广和不受控制的发电、电动交通工具的储电能力被认为是电网的完美风暴。这个方案被称为智能电网。它结合了嵌入式智能技术和实时通信与控制功能,能够随时与任何用户进行实时通信并控制其负载。要实现这样的通信功能,就需要采用以电网作为主要通信媒介的PLC技术。

PLC技术早在20年前就被用于中压领域来控制电网。但在低压侧大规模使用PLC则是更近才开始的。PLC技术的一个典型成功案例,是意大利 ENEL供电公司采用一个基于 FSK和BPSK调制的窄带PLC系统为3 500万用户构建一个AMM(自动电表管理)系统。此系统可每2个月自动抄读一次3 500万台电表。但是它的平均波特率不够,无法支持更多的实时通信和控制,以及未来基于IPv6等通信协议的应用。

要进行更多的实时通信和控制,以及未来基于IPv6等通信协议的应用,就需要一种基于OFDM调制的新一代PLC技术。其中两种主要的OFDM方案,就是现在的G3和PRIME技术。G3是一个由法国EDF电力公司发起,MAXIM和SAGEMCOM开发的方案。这个方案在2009年被公布,EDF计划将在2013年试用2 000台采用G3技术的电表。

PRIME是一个由PRIME联盟推出的一个开放式多供应商的解决方案,该联盟包含了 30多个由供电公司、表计厂家和ADD半导体、FUJITSU、STM和TI等晶片供应商组成的成员。其中的表厂包括 SAGEMCOM、ITRON、LANDIS+GYR、ISKRA-MECO、ZIV和SOGECAM。IBERDROLA是第一家推广此方案的供电公司,但现在 EDP、CEZMERENI和 ITRI也加入了这个阵营。

IBERDROLA在2010年开始安装10万台采用PRIME技术的电表。该供电公司还计划在2010年年底发布一个需量为100万台电表的新标,并于未来3~5 a在西班牙完成1 000万台电表的安装。其他一些供电公司也开始采用PRIME技术。G3和PRIME都是OFDM方案,但发展历史有所不同。G3最初是采用了一块由MAXIM设计的芯片,此芯片可提供适用于PHY层和某些现有软件层的IEEE802.15.42006通信,适用于MAC层的6LowPAN和适用于网络层的IPv6通信。

PRIME则是由一个供电公司、行业厂家和大学研究所构成的联盟,合作开发一个新型OFDM电力线技术公开标准的产物。该联盟采用一个针对PHY层的系统性设计流程,从满足最基本的要求开始。接下来就是从噪声等级、噪声节奏、信号减弱和阻抗模式等要素来对物理媒介进行定义。行业厂家则开发用于这些目的的新型自动化产品,并和供电公司展开了多次合作。由此产生了一个包含了噪声等级、噪声节奏、信号减弱和阻抗模式等要素的大型数据库和用于电网的精确数据统计模式。

第二步,他们通过模拟的方法,用这个模式来评估OFDM技术的头实现、带宽分配、子载波数量、子载波调制和误差纠正等多个参数构成的不同组合,并采用新设备在实地测试中来评估最好的方案。经过多次的重复和大量的实地测试,他们根据欧洲电网的情况和供电公司的规格要求,选出最佳的参数组合。此外,MAC和上端通信层也是由一个包含了晶片供应商、表厂和供电公司的联盟开发出来的。

经过努力,他们开发出了PHY、MAC和集中通信层。PHY层在临近节点之间收发MPDU。它采用位于CENELECA频段高频率的47.363 kHz频率带宽,平均传输速率为70 kbps,最大速率可达120 kbps。在此条件下,网络中各个节点之间可直接通信的概率为92%。其他时候,路由可以确保100%连接成功。

MAC层提供了系统接入、带宽分配、连接创建/维护和拓扑分辨等核心MAC功能。

服务专用型集中层(CL)可以对信息传输进行分类,将其和适合的MAC连接关联起来。它可测定可能包含在MACSDU中的任何数据传输,也可具备有效负载头压缩功能。同时,采用多个子集中层来实现MACSUD中的各种不同的数据传输。

在基本FSK或BPSK方案中,信息是以单个载波来传输的。传输的波特率取决于带宽的大小,而噪声和选择性减弱会限制通信。而在OFDM方案中,信息是通过多个子载波来传输的。传输的波特率取决于带宽和DBPSK、DQPSK或D8PSK子载波调制的复杂性。通过采用多个子载波、编码和纠错,更好地消除了通信中的噪声和选择性减弱。

符号的大小是由采样频率以及子载波的数量决定的。符号越大,越能可靠地抑制脉冲噪声。编码提高了稳定性,但也增加了复杂性和功耗。子载波越多,通信稳定性就越高,但并不意味着波特率也越高。G3技术采用36个子载波、0.735 ms的分类符号、6.79 ms的序和9.5 ms的开头,需要重复法和RS纠错来提高通信稳定性。PRIME采用了97个子载波、2.24 ms的长符号、2 ms的序和4.48 ms的开头。为了避免重复法和RS纠错的复杂性,它采用了能效高3倍的符号来提高通信稳定性。这是一个能够提供稳定性,但成本更低的方案。

总之,传统电网在向需要更高级通信能力的智能电网发展。PLC技术是实现必需功能和稳定性的更便利的技术。PLC技术也在朝着OFDM方案变革,而G3和PRIME则是主要的两个方案。

猜你喜欢

波特率电表载波
巧判电表测量对象
电表“对”与“错”归类巧掌握
CAN 总线波特率自适应程序设计
基于FPGA的异步串行通信波特率容错设计
看电表
应急广播系统中副载波的构建与应用
低压载波通讯测试仪的开发与应用
一种电表模拟软件的应用研究
基于最优化搜索的迭代载波同步算法
一种双频载波相位周跳探测与修复的方法