大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制
2011-12-18孙圣思嵇少丞
孙圣思,嵇少丞,2
(1.加拿大蒙特利尔大学工学院民用、地质、采矿工程系,蒙特利尔H3C 3A7;2.中国地质科学院地质研究所,国土资源部大陆动力学重点实验室,北京100037)
大洋板块俯冲带地震波各向异性及剪切波分裂的成因机制
孙圣思1,嵇少丞1,2
(1.加拿大蒙特利尔大学工学院民用、地质、采矿工程系,蒙特利尔H3C 3A7;2.中国地质科学院地质研究所,国土资源部大陆动力学重点实验室,北京100037)
大洋板块俯冲带是许多重要地质作用(例如脱水、部分熔融、岩浆和地震活动)发生的场所。对位于俯冲带之上的地震台站所检测到的不同剪切波的数据解析,可以获得源于上覆板块、地幔楔、俯冲板块和板下地幔的地震波各向异性的关键信息。本文系统总结了世界各地大洋俯冲带的剪切波分裂样式,对目前国际上流行的大洋俯冲带的地震波各向异性的主要成因模式(例如地幔楔拐角流、与海沟迁移有关的平行海沟的地幔流、橄榄石位错蠕变形成各类组构以及蛇纹石化的影响等)进行了较为详尽地评述。由橄榄石(010)[100]、(010)[001]、(100)[001]、{0kl}[100]、(001)[100]和{110}[001]位错蠕变形成的晶格优选定向(LPO)分别称之为 A 型、B 型、C 型、D型、E型和F型组构,其中A型、D型和E型组构总是导致剪切快波的偏振方向(φ)平行于地幔流的方向,而B型组构则导致φ垂直于地幔流的方向。C型组构虽然也能使φ平行于地幔流方向,但快慢波之间的延迟时间(δt)则不如同等条件下A型组构形成的那么大。F型组构导致剪切波在垂直于地幔流动面的方向上传播时几乎不发生分裂。叶蛇纹石是俯冲板块地幔和地幔楔中最主要的含水矿物,具极低的流变强度、很低的地震波速和很大的弹性各向异性。蛇纹石化程度越高,变形地幔岩的各向异性就越大,则弧前地幔楔的剪切波分裂愈强。只要蛇纹石的含量超过10%~20%,则变形地幔岩的地震波各向异性特征将由蛇纹石的LPO主导。地幔楔的剪切波分裂特征主要取决于其蛇纹石化程度与俯冲角度,陡倾的俯冲和高程度的蛇纹石化有利于形成平行于海沟的φ。
大洋俯冲带;地震波各向异性;剪切波分裂;橄榄石组构;海沟迁移;蛇纹岩化;地幔楔
0 引 言
在各向异性介质中传播的剪切波(S波)会分裂成两个偏振方向相互垂直、速度不同的子波,速度快的是快波(Vs1),速度慢的是慢波(Vs2),两者之间的走时差或称延迟时间(δt)是剪切波穿越途径上介质的弹性各向异性的度量。快波的偏振方向(φ)平行于该介质中与剪切波传播方向垂直的面上的速度最快的方向,与有限应变椭球主轴(X,Y,Z)或主切面(例如构造线理和面理或剪切面)方位具一定的几何关系。φ和δt是目前量化地壳和上地幔剪切波各向异性的两个重要参数。
板块俯冲带不仅是地球上构造活动极为活跃的地区,而且是相变、脱水、部分熔融、岩浆作用和地震活动的重要场所,因而理所当然地成为剪切波分裂研究的重要对象。通过分析俯冲带之上地震台站所检测到的不同剪切波数据可以区分各向异性的来源:上覆板块、地幔楔、俯冲板块或俯冲板块之下的地幔(图1)。
图1 S波和SKS波的传播路径及其所反映的地震波速各向异性的源区(上覆板块、地幔楔、俯冲板块、板下地幔)Fig.1 Illustration of various raypaths of S and SKS waves that detect seismic anisotropy contributed by different parts of subduction system(i.e.,the overriding plate,the mantle wedge,the subducting slab,and the subwedge mantle)
(1)由震源位于俯冲板块的地震所产生的S波,经地幔楔直接传到上覆板块上的地震台站,主要记录了地幔楔的各向异性(Fischer and Wiens,1996;Fischer et al.,2000;Levin et al.,2004;Long and van der Hilst,2006;Pozgay et al.,2007;Abt et al.,2009),因为一般来说地壳对S波分裂的贡献很小 (Ji and Salisbury,1993;McNamara et al.,1994;Herquel et al.,1995;Sherrington et al.,2004;Frederiksen et al.,2003;Ozacar and Zandt,2004)。例如,新西兰Alpine右旋走滑断裂经过地区的地壳的S波分裂δt≤0.1 s,虽然实验室内测定采自该断裂带的构造片岩和糜棱岩的地震波速各向异性高达 17%(Okaya et al.,1995;Godfrey et al.,2000),上述差异很可能是由于测量的尺度效应造成的,在天然S波穿越范围(直径约40 km的圆柱体)内,多期多阶段的变形相互叠加形成极其复杂的构造样式,不同方向的各向异性彼此消减,甚至抵消(Ji and Salisbury,1993;Ji et al.,1994;Pulford et al.,2003)。
(2)由震源位于俯冲板块的地震所产生并向板下地幔传播的S波,被远处的地震台站记录,其数据经过分析校正后可以得出地幔楔以下,即俯冲板块和板下地幔的各向异性(Russo and Silver,1994;Russo,2009)。
(3)由俯冲带之上地震台站记录到的远震SKS或SKKS分裂,反映其近垂直传播路径上所有各向异性层的综合信息,减去地幔楔的贡献就可得出俯冲板块及其板下地幔的各向异性信息(Abt et al.,2010)。
1 大洋俯冲带剪切波分裂的样式
20世纪下叶,Ando et al.(1983),Fukao(1984),Bowman and Ando(1987)等率先发表了日本列岛和汤加地区的俯冲带剪切波分裂的数据。此后,地震学家分别对全球几十个俯冲带开展了地震波各向异性的研究。Long and Silver(2008,2009)综合总结了全球15个俯冲带剪切波分裂的特征(图2)。该图中蓝色和红色双箭头分别代表φMW和φSW方向,φ代表剪切快波的偏振方向,其下标MW和SW分别代表地幔楔(Mantle Wedge)和地幔楔以下的俯冲板块及其板下地幔(Subwedge)。
地幔楔以下的剪切波分裂特征较为简单。φSW大多平行海沟,例如太平洋北侧的阿留申列岛(Long and Silver,2008)、西北侧的勘察加半岛-千岛群岛(Peyton et al.,2001;Levin et al.,2004)、台湾以东的琉球群岛(Long and van der Hilst,2005,2006)、伊豆 -小笠原 -马里亚纳群岛(Wirth and Long,2010;Wookey et al.,2005)、汤加 -克马德克-新西兰列岛(Long and Silver,2008;Audoine et al.,2004)、中美洲和南美洲南部的西海岸(Abt et al.,2009;Polet et al.,2000;Russo and Silver,1994)、印度洋东侧的苏门答腊(Long and Silver,2009)等。但在日本本州岛,φSW大多斜交于海沟的走向(Long and Silver,2009)。在北美洲西海岸的卡斯卡迪亚(Cascadia)地区(Currie et al.,2004)、南美洲的中部(Polet et al.,2000)等,φSW近垂直于俯冲带的走向。从全球范围来看,地幔楔以下的剪切快慢波间的延迟时间(δtSW)变化范围较大,例如在琉球群岛δtSW不到0.2 s,几乎可以看做是各向同性的(Long and van der Hilst,2005,2006),但在汤加-克马德克俯冲带δtSW的平均值为1.8 s,最大值甚至高达2.4 s(Long and Silver,2009)。
图2 地幔楔和板下地幔的剪切波分裂的特征(分别以蓝色与红色表示)。双箭头表示剪切快波的平均偏振方向(φ),箭头边上的数字表示剪切快慢波之间平均的延迟时间(δt,以秒为单位)。所用资料来自Long and Becker(2010)。Fig.2 Shear wave splitting patterns of mantle wedge(blue)and subwedge mantle(red).Arrows indicate average fast polarization directions(φ),and numbers show the associated average delay times(δt,in sec).Data from Long and Becker(2010).
地幔楔的剪切波分裂情况比较复杂。一部分俯冲带的φMW平行海沟,如阿留申列岛、日本海和本州岛西部(Fouch and Fischer,1996)、新西兰的希库朗伊(Hikurangi)俯冲带 (Marson-Pidgen et al.,1999)、苏门答腊地区(Hammond et al.,2010);另一部分俯冲带的φMW基本垂直或高角度斜交于海沟,如伊豆-小笠原-马里亚纳群岛(Fouch and Fischer,1996)和智利的西北部(Polet et al.,2000)。有趣的是,在一些俯冲带(例如日本的东北部)出现从海沟向弧后盆地方向φMW转变的情况:在弧前或海沟附近,φMW平行海沟,但在弧后盆地φMW垂直于海沟(Nakajima and Hasegawa,2004;Huang et al.,2011)。但是与上述情况相反的转变也有报导,例如在勘察加半岛,在海沟附近,φMW垂直于海沟,但在弧后盆地 φMW却平行于海沟(Levin et al.,2004)。还有的地幔楔,其φMW方向的变化更为复杂,尚难以归纳其特征,如日本从南部的九州到北边的北海道,φMW时而平行、垂直或斜交于海沟走向(Salah et al.,2008;Wirth and Long,2010)。在全球范围内,δtMW(地幔楔的快慢波之间的延迟时间)变化范围也很大,如在南美的西海岸(Russo and Silver,1994)、中美洲的哥伦比亚(Shih et al.,1991),地幔楔近乎各向同性(δtMW=0.1~0.4 s);而在新西兰的希库朗伊俯冲带,δtMW却高达1.5 s(Marson-Pidgen et al.,1999)。
为了解释俯冲带的剪切波分裂性质的复杂性和多样性,学界已经提出了数种成因模式,我们将对其中主要的模式做些评介。需要强调的是,目前尚没有一个统一的成因模式能够解释世界上所有俯冲带的地震波各向异性的特点,研究还有待深入。
2 地幔楔拐角流
形成地震波各向异性的因素有很多,主要包括:(1)互层岩石的复合构造,各成分层具不同的弹性力学性质,可以是各向同性也可以是各向异性的(Backus,1965;Ji et al.,2004;Ji,2008),垂直层理的波速总是较低,而平行层理的波速较高。(2)岩石中裂隙或微裂隙的定向排列,裂隙既可以被气体、液体或熔体填充(Crampin and Booth,1985;Kendall,1994;Wang and Ji,2009),在垂直定向裂隙面的方向上波速较低,而在平行定向裂隙面的方向上波速较高;(3)各向异性矿物的晶格优选定向(LPO),上地幔的各向异性一般认为是由其主要造岩矿物橄榄石和辉石的 LPO所致(Hess,1964;Nicolas and Christensen,1987;Ji et al.,1994;Mainprice,2007)。橄榄石在上地幔中含量最多,其单晶体的地震波速各向异性较大(图3),P波的各向异性系数高达22.9%,最大Vp(10.0 km/s)平行于[100]方向,最小Vp(7.7 km/s)平行于[010]方向,在[001]方向上Vp=8.4 km/s(Ji et al.,2002)。橄榄石的最大剪切波分裂达1.0 km/s,出现在[101]方向上,而在[100]方向上却不发生剪切波分裂。目前,一般都是利用橄榄石的LPO解释上地幔的各向异性和剪切波分裂的数据,并且认为LPO是橄榄石在上地幔条件下发生位错蠕变的产物,因为扩散蠕变和晶界滑移主导的超塑性变形基本上不能形成LPO(Karato and Wu,1993)。但只要条件适当,位错蠕变既可发生在岩石圈地幔(Ji et al.,1994;Silver,1996;Savage,1999),亦可在软流圈地幔(Vinnik et al.,1992)。后者主要反映现代板块运动,而前者主要反映地史上最后一次最强烈的构造变形,所形成的LPO“冻存”于较刚性的岩石圈地幔。在位错蠕变场内,有限应变愈大,形成的橄榄石的LPO愈强,地震波速各向异性和剪切波分裂亦就愈大。LPO强度随应变的增加不可能是无限制的,当有限应变达到或超过某一临界值(例如,γ=4~5),LPO的强度就可能达到饱和状态,不再随着应变增加而增加。
图3 橄榄石单晶体的地震波速分布特征。(a)橄榄石单晶体主要晶格方向上的Vp、Vs1和Vs2的值(单位为km/s,Vp>Vs1>Vs2)。(b-e)分别为橄榄石单晶体中Vp、Vs1、Vs2和δVs(=Vs1-Vs2)的等值线分布图(单位为km/s),下半球赤平投影;a,b和c分别表示橄榄石单晶体的三个晶轴。Fig.3 Seismic velocities of olivine single crystal.(a)Vp,Vs1and Vs2values in main crystallographic directions(in km/s,Vp>Vs1>Vs2).(b-e)Vp,Vs1,Vs2and δVs(=Vs1-Vs2)are shown in equal area stereographic projection with respect to the olivine crystallographic axes of a,b,and c.
图4 由地幔楔中二维拐角流和板下平行海沟的三维地幔流所形成的剪切波分裂特征。无论在地幔楔还是板下地幔中,橄榄石皆发育A型组构。Fig.4 Shear wave splitting patterns produced by 2D corner flow in the mantle wedge and 3D trenchparallel flow in the subslab mantle when olivine develops A-type fabrics.
自然变形和实验变形形成的最常见的橄榄石组构就是其(010)面和[100]方向分别优势集中到剪切面(C面)和剪切方向。随着有限剪切应变的增加,剪切面和剪切方向与最大挤压面(即面理或有限应变椭球的XY面)和最大拉伸方向(即有限应变椭球的X轴)之间的夹角逐渐减小。俯冲板块与地幔楔之间的流变学耦合(Rheological coupling)常在地幔楔中形成二维拐角流(图4),橄榄石发生位错蠕变,使其(010)面和[100]方向分别平行于地幔流的流面和流线。该模式预测,地幔楔的φMW方向平行俯冲板块的绝对运动方向,即垂直或高角度斜交于海沟的走向;δtMW的变化应主要取决于板块的运动速度和俯冲角度的大小。板块的运动速度越大,拐角流的规模就越大,应变也就越大,LPO的强度也应更大。对于俯冲角度几乎保持恒定的同一地区来说,δtMW应该比较均一,变化范围不应太大(McKenzie, 1979;Ribe,1989;Fischer et al.,2000),这与一些弧后地区的剪切波分裂的资料吻合,如汤加-克马德克俯冲带的西部(Fischer and Wiens,1996)和伊豆-小笠原的弧后地区(Fouch and Fischer,1996)。从理论上说,靠近海沟即接近地幔楔的楔角顶部(图4),地幔可能会出现滞流,形成的LPO强度也就弱,因为那里的应变量并不大,甚至会出现平行海沟的侧向流动,使得φMW平行于海沟,形成较为复杂的LPO样式及其随空间位置的变化,导致φMW和δtMW数据的离散。
Buttles and Olson(1998)对拐角流进行了简易的物理模拟实验,说明板块俯冲角度对地幔楔内矿物的LPO强度有着较为重要的影响。Fischer et al.(2000)做过一些数值模拟实验,其结果表明由拐角流所形成的橄榄石和斜方辉石的LPO样式可以解释汤加俯冲带之上地幔楔的剪切波分裂的特征。然而,二维拐角流模型目前尚无法解释某些地区地幔楔φMW平行于海沟的特征,甚至对φMW垂直于海沟的地幔楔的解释也仍需进一步完善。此外,二维拐角流模式预言的δtMW与板块运动速度呈正相关,这与实际观测数据的统计结果尚不吻合(Long and Silver,2008)。
3 海沟迁移
Russo and Silver(1994)首次在剪切波分裂的解释中注意到板块后退(Slab rollback)和海沟迁移(Trench migration)的影响(图5),认为它们是引发平行海沟的地幔流(图4)、形成南美洲平行于海沟走向的φSW的主要因素。对此,Buttles and Olson(1998)还进行了物理模拟实验,实验结果证明俯冲板块后退导致的平行海沟的地幔流足以形成所观察到的平行海沟的φSW,他们预言地震波速各向异性的强度与海沟的总迁移量有关。其他学者也对平行海沟的三维地幔流开展了一系列物理模拟(Kincaid and Griffiths,2003;Funiciello et al.,2006)和数值模拟(Piromallo et al.,2006;Stegman et al.,2006;Schellart et al.,2007;Becker and Faccenna,2009)。最近,Long and Silver(2008,2009)又对海沟或俯冲板块迁移引发的平行于海沟的地幔流的概念做了进一步的发展和完善。当大洋板块的俯冲角度由缓变陡(图5a),位于大洋一侧的板下地幔必然受到俯冲板块的挤压,导致平行海沟的塑性流动,形成橄榄石[100]方向平行于海沟的强烈的LPO,其结果导致φSW平行于海沟走向。大洋板块俯冲角度的由缓变陡可能是一种较为普遍的地质现象(Hsui et al.,1990;Houseman and Gubbins,1997),俯冲洋壳(玄武岩和辉长岩)先转变成密度大的榴辉岩然后再转变成密度更大的石榴子石岩(Ringwood,1991;Ji and Zhao,1994);在地幔转换带(Transition zone)内,橄榄石也会转变成密度更大的尖晶石(γ相),俯冲的大洋板块在重力作用下必然要发生由缓变陡的旋转;另一种地质作用也可以导致平行海沟的地幔流,即海沟迁移。若俯冲板块后退,则迁移的板块挤压着板下地幔(图5b),导致φSW平行于海沟走向(图4)。若俯冲板块前进,则迁移的俯冲板块挤压着地幔楔(图5c),导致φMW平行于海沟走向。Long and Silver(2008,2009)分析了世界上15个俯冲带的δtSW与板块运动速率、海沟迁移速率、俯冲板块年龄及其倾角、地震最大深度等构造参数的相关性,他们发现只有海沟迁移速率(Heurt and Lallemand,2005)与δtSW之间具有较好的线性关系(R=0.72)。在海沟迁移速率很小或几乎为零的阿留申群岛,δtSW也很小或近乎为零,即各向同性。但在汤加-克马德克地区,海沟迁移速率高达5 cm/a,δtSW的平均值为 1.8 s,最大值高达 2.4 s(图6a)。众所周知,剪切快慢波之间的延迟时间与其穿越的各向异性介质的厚度及该介质各向异性的强度成正比。迁移速率快的板块俯冲系统可以引发更大规模的平行海沟的地幔流,从而在较大范围内产生高强度的上地幔矿物的晶格优势定向,这就解释了δtSW与俯冲板块迁移速率呈正相关的原因。但是,Long and Silver(2008,2009)并没有考虑到海沟迁移方向对地幔流的可能影响。统计结果(Gripp and Gordon,2002;Funiciello et al.,2008)显示,占全球俯冲带总长度53%的海沟作前进运动,其余47%的海沟作后退运动。在海沟后退过程中(如南美洲西海岸的俯冲带,中美洲西海岸的俯冲带以及西太平洋的琉球俯冲带等),俯冲板块挤压着板下地幔,主要影响着俯冲带外侧的φSW和δtSW。但是,在海沟前进过程中(如伊豆-小笠原-马里亚纳俯冲带、克马德克俯冲带、苏门答腊俯冲带等),俯冲板块挤压着地幔楔,主要影响着俯冲带内侧的φMW和δtMW,而对φSW和δtSW理应没有什么直接影响。在Long and Silver(2008,2009)的统计图(图6a)上,并没有考虑到海沟迁移方向的影响,故其统计结果及其地质意义尚有待于进一步明确。
图5 俯冲板块旋转(a)、后退(b)和前进(c)的模式示意图。虚线和实线分别表示变化前后俯冲板块的位置,箭头表示板块的运动方向Fig.5 Schematic diagrams of rotating(a),retreating(b)and advancing(c)slabs.Dashed and solid lines indicate slab locations before and after the change,respectively.Arrows indicate the motions of the trench and the subducting slab
图6 (a)俯冲板块和板下地幔的剪切波延迟时间(δtSW)随海沟迁移速率(Vt)的变化。(b)地幔楔的剪切波延迟时间(δtMW)与Vt/Vc的关系,Vt/Vc表示海沟迁移速率与板块运动速率的比值。红色和蓝色分别表示前进的和后退的海沟,不同的符号代表不同的俯冲带。建图数据来自Long and Silver(2008)Fig.6 (a)Average subwedge delay time(δtSW)versus trench migration velocity(Vt).(b)Average mantle wedge delay time(δtMW)versus Vt/Vc.Vt/Vcrepresents trench migration velocity normalized by total convergence velocity.Retreating and advancing trenches are represented by blue diamonds and red squares,respectively(Data from Long and Silver,2008)
需要强调的是,当俯冲板块向前迁移时,在地幔楔内会同时存在垂直于海沟的二维拐角流和平行于海沟的三维地幔流(图4),所以,地幔楔的剪切波分裂样式应是上述两种作用彼此竞争的结果(Long and Silver,2008,2009)。如果板块运动速率Vc和海沟迁移速率Vt分别影响着垂直于海沟的拐角流和平行于海沟的地幔流的强度和规模,那么当Vt/Vc比值较小时(<~0.2),地幔楔内则以拐角流为主,φMW会垂直于海沟,δtMW会随Vt/Vc比值减小而增大(图6b)。相反,如果海沟迁移占主导(即Vt/Vc比值大于~0.6),则δtMW与海沟迁移速率呈正相关,即δtMW随Vt/Vc比值增大而增大(图6b)。介于上述两种极端情况之间的其他俯冲系统,垂直于海沟的拐角流和平行于海沟的地幔流两种作用势均力敌,所形成的各向异性彼此消减,故观察到的δtMW值就小(图 6b)。虽然 Long and Silver(2008,2009)的理论模式能较为合理地解释地幔楔的δtMW资料,却不能圆满地解释每一条俯冲带的φMW数据。例如,在伊豆-小笠原俯冲带,海沟迁移速率约为 5 cm/a,Vt/Vc比值约为1,Long and Silver(2008,2009)把该俯冲带归入海沟迁移主导的类型,即俯冲板块之上的地幔楔的φMW平行于海沟,然而实际观察到的却是垂直海沟。阿留申俯冲带的海沟几乎静止不动,既不前进也不后退,Long and Silver(2008,2009)将之划归二维拐角流主导的类型,然而,实际观察的φMW却是平行海沟的(图2)。此外,世界上大多数俯冲带的海沟迁移速度Vt总比板块俯冲速度Vc要小得多,即Vt/Vc<<1,理应在大多数情况下二维拐角流强于三维地幔流,即垂直于海沟的φMW要比平行于海沟的φMW更为常见,这个问题尚有待进一步探讨。
另外,Long and Silver(2008,2009)提出的三维地幔流的可行性的三个必要条件皆有疑问。第一个条件是,俯冲板块与其板下地幔之间不发生流变学耦合,这样大洋板块在俯冲过程中才不会拖曳着板下地幔向着俯冲方向一起流动,板下地幔才能作平行于海沟的侧向流动。为了满足上述条件,Morgan et al.(2007)假设在俯冲板块与板下地幔之间存在着一个流变强度极低的薄层(10~30 km),它可能是高温的、含水量高的软流圈的物质,被强拖到俯冲板块与板下地幔之间,该假说还有待证实。三维地幔流可行性的第二个条件要求在地幔转变带深度(410 km)或上下地幔边界(660 km)位置存在高强度的力学阻隔层(例如石榴子石岩层,Ringwood,1991),低温高强度的俯冲板块能够通过而高温低强度的板下地幔流却不能通过,这样,地幔流就可以在俯冲板块迁移的驱赶下作平行于海沟的侧向水平流动。目前,震源和地震波层析数据已证实俯冲板块可以穿越转变带和660 km不连续面并插入下地幔(van de Hilst et al.,1997;Li et al.,2008)。但是,上地幔的板下地幔流能否进入下地幔以及转变带内地幔流的强度与规模,目前尚无定论,争议依然很大(Tackley,2008)。三维地幔流可行性的第三个条件要求,在垂直俯冲带方向的远处存在某种强大的力量,驱赶着热的、流变强度低的板下地幔物质向着俯冲带方向运动,靠近俯冲板块时,由于冷的高强度的俯冲板块的阻挡,地幔流被迫作平行于海沟的侧向水平流动(Buttles and Olsen,1998;Kincaid and Griffiths,2003)。上述神秘的力量或许就是热-浮力驱动的上升地幔流或地幔柱。据此推理,靠近洋中脊的南美洲西海岸的板下地幔的δtSW应该大于远离洋中脊的汤加-克马德克-新西兰俯冲带的板下地幔的δtSW,然而,事实并非如此,可见上述的第三个条件并非必要条件。
4 橄榄石B型组构的特殊性
传统的实验资料(Carter and Ave Lallemant,1970)表明,在实验室应变速率条件下,橄榄石的位错滑移系随温度升高逐渐由(100)[001]过渡到{110}[001],然后再变为{0kl}[100],最后到(010)[100](图7a),这4个滑移系之间相互转变的临界温度随围压增加而逐渐减小。在正常的上地幔温压条件下,最流行的橄榄石滑移系应该是(010)[100],这与世界上许多地方玄武岩或金伯利岩中地幔包体的橄榄石组构是一致的(Nicolas and Christensen,1987;Mainprice and Silver,1993;Ji et al.,1994,1996;Saruwatari et al.,2001)。但是,Carter and Ave Lallemant(1970)的实验是在固体围压介质的Griggs装置上完成的,由于当时技术条件的局限性,差应力的测量精度不够,岩石试样中甚至还可能存在较大的温度不均匀性,同时水的影响亦没有得到有效地控制。
近年来,美国耶鲁大学唐户俊一郎(Shun-ichiro Karato)教授领导的研究组(Jung and Karato,2001;Karato,2002;Katayama et al.,2004;Skemer et al.,2006;Jung et al.,2006)针对水对橄榄石LPO类型的影响做了一系列的实验探讨(图7b),他们认为,在正常差应力(<350~400 MPa)作用下,随着水含量的增加,橄榄石的位错滑移系从(010)[100]先转变成(001)[100],然后再转变到(100)[001]。但在高差应力(>350~400 MPa)作用下,橄榄石在低水含量和中-高水含量的情况下分别出现{0kl}[100]和(010)[001]滑移系。由滑移系(010)[100]、(010)[001]、(100)[001]、{0kl}[100]、(001)[100]和{110}[001]位错蠕变形成的 LPO 分别称之为A型、B型、C型、D型、E型和F型组构(图7c)。
图7 在不同温度、压力、差应力和水含量条件下,橄榄石的6个主要滑移系(a和b)所形成的6种主要类型的组构(c)。(a)建图数据取自Carter and Ave Lallemant(1970),应变速率为7.8×10-5s-1;(b)建图数据取自Jung and Karato(2001)和 Jung et al.(2006),变形温度1200~1300 ℃,应变速率为 5.6×10-6~9.5×10-4s-1Fig.7 (a).Deformation fabrics of olivine at stain rate~7.8 ×10-5s-1as a function of temperature and pressure(Data from Carter and Ave Lallemant,1970).(b).Deformation fabrics of olivine at 1200~1300 ℃ and a stain rate of 5.6×10-6~9.5 ×10-4s-1as a function of differential stress and water content(Data from Jung and Karato,2001 and Jung et al.,2006).(c).Typical pole figures of A,B,C,D,E and F-type LPOs in(a)and(b).Pole figures are presented in equal area stereographic projection with respect to three principal axes(X,Y,and Z)of the finite strain ellipsoid
然而,学界对唐户俊一郎等的结论目前尚存很大的争议,主要因为他们的实验结果尚未被其他实验室重复验证(Li et al.,2003a,b;Couvy et al.,2004;Li et al.,2004;Raterron et al.,2004,2007;Ji et al.,2007)。例如,美国纽约大学石溪分校的矿物物理研究所和法国里尔大学固体结构与性质实验室的研究人员更强调围压对橄榄石位错滑移系转变的重要性。Couvy et al.(2004)报道,在围压11 GPa(对应于约330 km的深度)、温度1400℃和简单剪切条件下,橄榄石的主要滑移系为{110}[001],形成F型组构。在温度1100~1400℃和无水条件下,Raterron et al.(2007)发现随着围压的增加(2.1~7.5 GPa)橄榄石最容易滑移的晶系由(010)[100](A型组构)转变为(010)[001](B型组构)。如果Raterron et al.(2007)的实验结果可以外延到更深的上地幔,那么在200~400 km深度范围内所流行的就可能是B型组构而不是A型组构。后来,Jung et al.(2009)在温度1270~1300℃、围压3.1~3.6 GPa、差应力 150~390 MPa,应变率2×10-5~6×10-5的条件下简单剪切(γ=3~6)了干的橄榄石多晶结合体,同样也获得了B型组构,这就说明高水含量并不是形成橄榄石B型组构的唯一条件。如果上述实验结果可外延到自然界,那么B型组构在80~100 km深度以下的地幔就可能存在了。所以,影响橄榄石组构转变的因素至少应该有4个:温度、差应力、水含量和围压。但是,图7c所示的6种类型组构之间相互转变的准确的边界条件,迄今尚不甚明确,仍需进一步研究。
由于橄榄石的A型、D型和E型组构都是由平行于[100]方向的位错滑移造成的,该方向是橄榄石晶体中波速最大的方向(图3)。所以,这三种类型中任一种LPO总会使得剪切快波的偏振方向平行于地幔的流动方向。但是,若在地幔流动过程中,橄榄石作{110}[001]滑移,[001](中间波速)的最大集密平行于拉张线理(X),而[100](最大波速)和[010](最小波速)方向皆形成垂直于拉张线理的环带,构成F型组构,当剪切波在垂直于地幔流动面(XY面)方向上传播时几乎不发生分裂。若在地幔的塑性流动过程中,橄榄石作(100)[001]滑移,[001](中间波速)的最大集密平行于拉张线理,[100](最大波速)方向垂直于面理,[010](最小波速)方向平行于面理且垂直于拉张线理,构成C型组构,当剪切波在地幔流动面的垂直方向上传播时,快波的偏振方向依然平行于地幔流方向,但是此时快慢波之间的延迟时间就不如同等条件下A型组构形成的那么大。
橄榄石的B型组构(图7)造成的地震波各向异性的样式和其他类型组构的明显不同,有必要在此作重点讨论。B型组构是由(010)[001]位错滑移造成的,[001](中间波速)方向的最大密集平行于拉张线理,[010](最小波速)方向垂直于面理,[100](最大波速)方向平行于面理且垂直于拉张线理。如果地幔作近乎水平的流动,则最小波速近乎垂直,而在水平面上最大波速则垂直于地幔流动方向。当剪切波在地幔流动面的垂直方向上传播时,快波的偏振方向就会垂直于而不是平行于地幔流的方向,这和所有其他类型橄榄石组构造成的地震波各向异性是截然不同的。
目前最关键的问题是A型与B型组构之间准确的转变条件,迄今尚不清楚。如果B型组构形成的必要条件是高水含量(>200×10-6H/Si)和高差应力(>320 MPa,Jung and Karato,2001;Jung et al.,2006;Karato et al.,2008),那么我们可进行如下探讨。在地幔岩的部分熔融过程中,水会优先进入熔体(Karato,1986;Hirth and Kohlstdt,1996;嵇少丞等,2008),水在熔体和橄榄石之间的分配系数是 104∶1(Grant et al.,2007)。所以,部分熔融程度越高,其难熔的残余组分如橄榄石就愈“干燥”,也就愈不容易形成B型组构。大洋岩石圈地幔相对于其下的软流圈地幔经过了更高程度的部分熔融,洋中脊就是地幔发生部分熔融的场所,大洋岩石圈地幔可以看成是由经过较高程度部分熔融之后的残余组分(方辉橄榄岩和纯橄岩)构成的,其中橄榄石的含水量甚少,所以,B型组构在大洋岩石圈地幔中是不可能大规模存在的。在岛弧之下,地幔楔也发生了较为强烈的部分熔融,水优先进入玄武岩熔体并侵入地壳或喷发到地表,岩浆源区的方辉橄榄岩中的橄榄石就相对变干,所以也不会形成B型组构。有的学者认为最有可能形成B型组构的地区是弧前地幔楔(Katayama and Karato,2006;Kneller et al.,2005,2007,2008),因为由俯冲板块脱水作用释放出来的水扩散进入地幔楔内的橄榄石晶体。然而,这些水也能与弧前地幔楔中的橄榄岩发生水化反应生成蛇纹石,蛇纹石的流变强度比橄榄石的低得多(图8,Brodie and Rutter,1987;Escartin et al.,2001;Hilairet et al.,2007;Chenak and Hirth,2010),应变将发生局部化并优先集中到蛇纹石之中。所以,在蛇纹石化橄榄岩中差应力是不可能很高的,那么需要在很高差应力条件下才能形成的橄榄石的B型组构也不可能出现在蛇纹石化的弧前地幔楔中。
图8 橄榄石和蛇纹石流变强度的比较及其蛇纹石化的作用。曲线边上的数字表示应变速率。建图数据取自Brodie and Rutter(1987)Fig.8 Comparison of flow strengths between olivine and serpentine.Strain rate(in s-1)is indicated for each curve.Dashed curve shows the effect of serpentinization.(Data from Brodie and Rutter,1987)
如果由于某些尚不为人知的原因,橄榄石的B型组构确实流行于弧前地幔楔中(Kneller et al.,2005,2007,2008;Mizukami et al.,2004;Skemer et al.,2006;Michibayashi et al.,2007;Tasaka et al.,2008),在二维拐角流的作用下,B型组构导致橄榄石的[100]方向平行于海沟,(010)面平行于地幔流动面,φMW也就平行于海沟,那么也就无需利用平行海沟的地幔流的假说来解释弧前地幔楔的剪切波分裂的资料。如果上述观点是正确的,以岛弧为界的地幔楔就可分为弧前地幔楔和弧后地幔楔,弧前地幔楔和弧后地幔楔分别以B型和A型组构为特征,造成弧前和弧后的φMW分别平行和垂直于海沟(图9),这样的分布在日本北海道和本州可以见到(Nakajima and Hasegawa,2004;Huang et al.,2011)。然而,在琉球俯冲带和汤加俯冲带的弧前地区,φMW皆是平行海沟的,但是,在琉球弧后大部分地区,φMW也是平行于海沟的(Long and van der Hilst,2006),而汤加弧后地区(Lau盆地)的φMW既不垂直海沟也不平行海沟,而是斜交于海沟(Smith et al.,2001)。在马里亚纳俯冲带(Pozgay et al.,2007)和中美洲西海岸的哥斯达黎加(Costa Rica)和尼加拉瓜(Nicaragua)俯冲带(Abt et al.,2009;Hoernle et al.,2008)的弧后地区也发现有平行于海沟的φMW,甚至在勘察加南部(Levin et al.,2004)和北美洲阿拉斯加地区(Christensen et al.,2010),φMW在弧前垂直于海沟,在弧后却是平行海沟的,这些复杂的现象尚难以用橄榄石的B型和A型组构的转变来解释。
图9 地幔楔中橄榄石的弧前B型组构和弧后A型组构对剪切波分裂的影响Fig.9 Shear wave splitting patterns resulted from olivine B-type fabrics beneath the forearc and A-type fabrics beneath the backarc
5 蛇纹石化作用
作为层状硅酸盐矿物的蛇纹石是超基性地幔岩的水化产物,它包括三个主要的同质多象变体,分别为利蛇纹石[Lizardite,Mg3Si2O5(OH)4]、纤蛇纹石[Chrysotile,Mg3Si2O5(OH)4)]和叶蛇纹石[Antigorite,Mg48Si34O85(OH)62]。蛇纹石作为含水矿物,影响其稳定性的主要因素是温度,其次才是压力(图10)。利蛇纹石和纤蛇纹石通常在<350℃的温度下稳定存在,称之为低温蛇纹石。只有叶蛇纹石能在 >350℃的温度下稳定存在(Evans,1977),叶蛇纹石转变成橄榄石+斜方辉石+水的边界随围压增加而减小:在2.0 GPa时是~720℃;在3.0 GPa时是~690 ℃;5.0 GPa时是~620 ℃(Ulmer and Trommsdorff,1995)。需要强调的是,在富铝、富铬和富水环境中上述反应边界会向高温方向迁移(Padron-Navarta et al.,2010)。在富水的地幔楔中,叶蛇纹石在温度高达800~850℃时可能依然稳定。所以,叶蛇纹石应是俯冲板块地幔内主要的蛇纹石矿物。
镁橄榄石 (Mg2SiO4)、铁镁橄榄石[(Fe,Mg)2SiO4]、顽 辉 石 (MgSiO3)和 滑 石[Mg3Si4O10(OH)2]的水化反应可以有下列形式:
图10 利蛇纹石和叶蛇纹石的稳定场图。矿物简写:Atg叶蛇纹石,Liz利蛇纹石,Ol橄榄石,Brc水镁石,Tlc滑石,Opx斜方辉石。相边界条件取自Ulmer and Trommsdorff(1995)和Evans(2004)Fig.10 Diagram showing the stability fields of lizardite and antigorite.Mineral abbreviations:Atg antigorite,Liz lizardite,Ol olivine,Brc brucite,Tlc talc,Opx orthopyroxene.Reaction boundaries are given by Ulmer and Trommsdorff(1995)and Evans(2004)
(1)镁橄榄石+顽辉石+水→叶蛇纹石
14Mg2SiO4+20MgSiO3+31H2O→Mg48Si34O85(OH)62
(2)镁橄榄石+滑石+水→蛇纹石
6Mg2SiO4+Mg3Si4O10(OH)2+9H2O→5Mg3Si2O5(OH)4
或18Mg2SiO4+4Mg3Si4O10(OH)2+27H2O→Mg48Si34O85(OH)62
(3)镁橄榄石+二氧化硅+水→低温蛇纹石
3Mg2SiO4+SiO2+4H2O→2Mg3Si2O5(OH)4
(4)镁橄榄石+水→蛇纹石+水镁石
2Mg2SiO4+3H2O→Mg3Si2O5(OH)4+Mg(OH)2
或34Mg2SiO4+51H2O→Mg48Si34O85(OH)62+20Mg(OH)2
(5)顽辉石+水→叶蛇纹石+滑石
90MgSiO3+45H2O→Mg48Si34O85(OH)62+14Mg3Si4O10(OH)2
(6)铁镁橄榄石+水+二氧化碳→低温蛇纹石+磁铁矿+甲烷
(Fe,Mg)2SiO4+H2O+CO2→Mg3Si2O5(OH)4+Fe3O4+CH4
(7)铁镁橄榄石+水+二氧化碳→低温蛇纹石+磁铁矿+菱镁矿+二氧化硅
(Fe,Mg)2SiO4+H2O+CO2→Mg3Si2O5(OH)4+Fe3O4+MgCO3+SiO2
(8)镁橄榄石+水+二氧化碳→滑石+菱镁矿
4Mg2SiO4+H2O+5CO2→Mg3Si4O10(OH)2+5MgCO3
(9)滑石+水→低温蛇纹石+二氧化硅
Mg3Si4O10(OH)2+H2O→Mg3Si2O5(OH)4+2SiO2
(10)滑石+菱镁矿+水→低温蛇纹石+二氧化碳
Mg3Si4O10(OH)2+3MgCO3+3H2O→2Mg3Si2O5(OH)4+3CO2
低温的利蛇纹石和纤蛇纹石向高温叶蛇纹石转变的反应式如下:
(11)低温蛇纹石→叶蛇纹石+水镁石
17Mg3Si2O5(OH)4→Mg48Si34O85(OH)62+3Mg(OH)2
(12)低温蛇纹石+二氧化硅→叶蛇纹石+水
16Mg3Si2O5(OH)4+2SiO2→Mg48Si34O85(OH)62+H2O
(13)低温蛇纹石→叶蛇纹石+镁橄榄石+水
20Mg3Si2O5(OH)4→Mg48Si34O85(OH)62+6Mg2SiO4+9H2O
反应式(1~2)和(11)的温压条件见图10,其他反应式的温压条件尚有待进一步的实验确定。蛇纹石的脱水反应是式(1~10)水化反应的逆反应。
近年来蛇纹岩对于俯冲带动力学的意义受到了越来越多的关注,主要原因如下:(1)蛇纹岩具有很特别的物理性质,例如低的P和S波速(图11),高的地震波各向异性和剪切波分裂(图12,表1),以及高的Vp/Vs比值或泊松比(Ji et al.,2002;Dewandel et al.,2003;Watanabe et al.,2007;Ji et al.,2009),利用这些特性就可研发出研究俯冲带特性的地球物理方法(Bostock et al.,2002;Faccenda et al.,2008;Boudier et al.,2009;Katayama et al.,2009);(2)蛇纹石作为俯冲带中最重要的水的载体(~13%,Schmidt and Poli,1998;Ulmer and Trommsdorff,1995),在深部高温条件下通过脱水作用释放出水,造成地幔楔的部分熔融,形成岛弧的岩浆作用(Hyndman and Peacock,2003;Wada et al.,2008);(3)蛇纹岩具有极低的流变强度(图8,Brodie and Rutter,1987;Escartin et al.,2001;Hilairet et al.,2007;Chenak and Hirth,2010)和较小的摩擦系数(Moore et al.,1996;Moore and Lockner,2007),所以俯冲板块蛇纹石化的程度直接影响俯冲带的热产出、地震活动性以及俯冲板块与地幔楔之间的力学耦合,蛇纹石化程度高的区段以蠕滑为主,难以产生强震,热产出也少,甚至影响俯冲板块内部的热结(Hirauchi and Yamaguchi,2007)。
大洋板块俯冲到一定的深度,含水矿物(如蛇纹石、滑石、水镁石)开始脱水,释放出大量的含水流体,进入地幔楔,一方面会造成地幔楔的部分熔融,形成岛弧的岩浆作用,另一方面在地幔楔内形成蛇纹石矿物,在深部主要是叶蛇纹石,但在弧前地幔楔的浅部,由于那里的温度相对较低,利蛇纹石和纤蛇纹石也可能稳定存在(Evans,1977,2004)。已有的地质(如在伊豆-小笠原-马里亚纳群岛出现大量的蛇纹石泥火山)和地球物理(如低的地震波速和高的Vp/Vs比值)数据表明,弧前地幔楔的蛇纹石化是一个全球性的普遍现象。例如,北美洲西海岸的卡斯卡迪亚(Bostock et al.,2002;Brocher et al.,2003)、日本西南部(Kamiya and Kobayashi,2000;Seno et al.,2001)、南美洲的安第斯山脉中部(Graeber and Asch,1999)和中美洲的哥斯达黎加(DeShon and Schwartz,2004)的弧前地幔楔均已发生了蛇纹岩化。
图11 地幔岩的P波(a)和S波(b)速度随蛇纹石化程度的增加而呈近线性地减小。波速测量的围压为600 MPa,N为样品总数。地幔岩的主要矿物橄榄石、古铜辉石和透辉石及其主要水化矿物叶蛇纹石、纤蛇纹石、利蛇纹石、滑石、水镁石和绿泥石的多晶集合体的波速也标注到图上,以便比较Fig.11 Vp(a)and Vs(b)as a function of serpentine content for mantle rocks.Seismic velocities were measured at 600 MPa,N indicates sample numbers.Velocities of main rock-forming minerals(olivine,bronzite,and dioposide)and hydrous minerals(antigorite,lizardite,chrysotile,talc,brucite,and chlorite)are also indicated for comparison
橄榄石单晶体的P和S波的各向异性分别为~23%和~20%(图3,Kumazawa and Anderson,1969;Ji et al.,2002),而叶蛇纹石单晶体的各向异性比这大得多(图12),其P和S波速的各向异性分别高达46%和66%(Bezacier et al.,2010)。加之,叶蛇纹石流变强度很小(图8),极易发生塑性变形,形成强烈的LPO:(001)面和[100]方向分别平行于蛇纹岩的剪切面和剪切方向(Katayama et al.,2009;Hirauchi et al.,2010;Kern et al.,1997),在经受强烈大变形的剪切带(如俯冲板块边界层)内,上述的剪切面(即俯冲板块边界)和剪切方向(即板块俯冲方向)分别近乎平行于变形岩石的面理和拉张线理。一般来说,由橄榄石的A型LPO形成的地震波各向异性仅为3%~5%,而且具有正交对称性:最大、中间与最小P波速度分别平行于有限应变椭球的三个主轴方向,即X(矿物拉张线理)、Y(平行于面理且垂直于线理)和Z方向(垂直面理)。而由蛇纹石LPO形成的各向异性总是很强(>10%),且具有轴对称性:最小波速垂直于面理,但在面理面上波速近乎各向同性。所以,蛇纹石含量的增加总是增强变形蛇纹石化橄榄岩在平行和垂直于面理方向上地震波速的差别,即各向异性。只要蛇纹石的含量超过~20%,则变形蛇纹石化橄榄岩的地震波各向异性特征将由蛇纹石的LPO主导,在面理上利用地震波速将无法区别X和Y方向。
图12 叶蛇纹石单晶体中Vp、Vs1、Vs2和δVs(=Vs1-Vs2)的等值线分布图(单位为km/s),下半球赤平投影;图中a和b分别表示a和b晶轴,c*表示(001)的法线方向。叶蛇纹石单晶体的弹性系数由Bezacier et al.(2010)测定Fig.12 Seismic velocities of antigorite single crystal.Vp,Vs1,Vs2and δVs(=Vs1-Vs2)are shown in equal area stereographic projection with respect to the crystallographic orientations of a,b,and c*,where c*is perpendicular to(001)plane.Elasticity data of antigorite are from Bezacier et al.(2010)
表1 常温常压下叶蛇纹石单晶体的弹性模量(实验数据来自 Bezacier et al.,2010)Table 1 Elastic constants(GPa)and properties of antigorite single-crystal at ambient conditions(Data from Bezacier et al.,2010)
Katayama et al.(2009)在围压 1.0 GPa 和温度300~400℃的实验条件下简单剪切了叶蛇纹石多晶集合体,在剪切应变γ≈2.0时该蛇纹岩的剪切波各向异性(AVs)高达32%,这与自然变形的蛇纹岩的各向异性相当(Kern et al.,1997;Ji et al.,2002;Christensen,2004;Wang et al.,2005;Watanabe et al.,2007)。由此可见,蛇纹石化必然会对俯冲带及其地幔楔的地震波速各向异性大小与样式影响很大,可惜以前的理论模式往往忽视了蛇纹石化的贡献。
例如,在西太平洋的琉球岛弧,剪切快慢波之间的延迟时间是1~2 s,若所观察到的剪切波分裂全部是由橄榄石的优选定向造成的(AVs=4.5%),那么各向异性层的厚度就需100~200 km,这些值在某些地方甚至要大于其下的地幔楔的厚度,这明显是不可能的。若上述剪切波分裂是由蛇纹石的优选定向造成的(AVs=32%),那么仅需10~20 km厚度的蛇纹岩就足够了。总之,蛇纹石化程度越高,地幔楔的各向异性也就越大,岛弧地区的剪切波分裂愈强。
地幔楔的蛇纹石化程度可能与俯冲板块的年龄有关。年轻的俯冲板块,内部温度梯度较高,会在弧前地区释放出大量的键间水,那里地幔楔的蛇纹石化程度因此较高;相反,在古老的俯冲板块内部,温度梯度较低,脱水反应会发生在更深处,弧前地区地幔楔的蛇纹石化程度因此较低(Wada et al.,2008)。西太平洋的琉球俯冲带属于低龄高温型,脱水反应发生在~40 km的深度,弧前的地幔楔会发生广泛的蛇纹石化作用,故剪切波的延迟时间较大(1~2 s)。日本东北部的俯冲带属于高龄低温型,脱水反应主要发生在100 km左右的深度,故弧前地幔楔的蛇纹石化程度很低,剪切波延迟时间仅 0.1~0.2 s。
蛇纹石化最强烈的部位很可能出现在俯冲板块与地幔楔之间的接触剪切带内,并在那里形成蛇纹岩层(图13a),由于其流变强度较两侧橄榄岩的低得多,逆冲剪切应变会在该蛇纹岩层中高度集中,形成强烈的叶蛇纹石LPO:(001)面平行于地幔楔与俯冲板块的接触面,而[100]方向平行于俯冲方向,造成最大和最小的波速分别平行于和垂直于面理方向。由于剪切波分裂技术目前仅测定介质中其传播方向的垂直面(对应于SKS和SKKS来说该面就是水平面)上的最大波速方向,所以无论φMW或δtMW都与俯冲角度有很大关系。如果俯冲带陡倾[例如马里亚纳俯冲带、汤加-克马德克俯冲带、斯科舍(Scotia)俯冲带],则在俯冲板块与地幔楔的接触剪切带内的水平面上,最大与最小波速应分别平行于和垂直于海沟的走向。相反,如果俯冲带呈低角度(例如南美洲西海岸),则俯冲板块与地幔楔之间的接触剪切带内的蛇纹岩层也呈低角度,故对地表台站测量到的剪切波分裂贡献较少。
图13 (a).由位于俯冲板块与地幔楔之间的蛇纹岩剪切带形成的剪切波分裂的特征。在剪切带内,蛇纹石的(001)面平行于剪切面,而[100]方向平行于剪切方向;(b).充填于俯冲板块张裂隙中的蛇纹石与剪切快波偏振方向的关系。蛇纹石的(001)面平行于张裂隙壁;在俯冲板块内橄榄石发育A型组构,即(010)面平行于俯冲板块,而[100]方向平行于板块俯冲方向Fig.13 (a).Shear wave splitting patterns produced by a serpentinized shear zone between the subducting slab and the mantle wedge.Serpentine in the shear zone is characterized by(001)plane parallel to shear plane,and[100]axis parallel to shear direction.(b).Shear wave splitting patterns induced by serpentinized fractures in subducting oceanic plates.Serpentine has a maximum concentration of(001)plane parallel to fault plane.Olivine in the subducting plate developed A-type LPO with(010)plane parallel to subducting plates and[100] axis parallel to subducting direction
剪切快波偏振方向平行于海沟也可能是由大洋俯冲板块上层沿断裂面发生的蛇纹石化造成的(图13b),条件是这些由定向蛇纹石充填的定向张破裂没有被后来的剪切变形破坏或重新定向与构造置换。物理模拟和实验观察证实大洋俯冲板块上层发育的张断裂近乎垂直或陡倾(Feccenda et al.,2008;Jiao et al.,2000;Ranero et al.,2005)。每条断裂的两壁上超基性岩的主要造岩矿物橄榄石和辉石经水化形成蛇纹石、滑石和水镁石等层状矿物。Boudier et al.(2009)利用透射电镜(TEM)和电子背散射衍射(EBSD)技术研究了Utah-Farallon俯冲带内超基性岩中叶蛇纹石和橄榄石组构之间的定向关系,发现了两种拓扑关系:(1)橄榄石的(100)面平行于叶蛇纹石的(001)面,橄榄石的[001]方向平行于叶蛇纹石的[010]方向,橄榄石的[010]方向平行于叶蛇纹石的[100]方向,这样拓扑关系记着:(100)ol∥(001)atg,[001]ol∥[010]atg,[010]ol∥[100]atg;(2)橄榄石的(010)面平行于叶蛇纹石的(001)面,橄榄石的[001]方向平行于叶蛇纹石的[010]方向,橄榄石的[100]方向平行于叶蛇纹石的[100]方向,这样的拓扑关系记着(010)ol∥(001)atg,[001]ol∥[010]atg,[001]ol∥[100]atg。
其中第一种拓扑关系在俯冲板块中更为常见,橄榄岩发育A型组构(图7),橄榄石[100]的优选方向平行于橄榄岩的拉张线理,而张裂隙则垂直于该线理,裂隙内叶蛇纹石的(001)面平行于裂隙面生长,故叶蛇纹石的(001)面垂直橄榄石[100]的优选方向。因为橄榄石的快波极化方向平行其[100]方向,而蛇纹石的快波极化方向平行于(001)面方向,所以具第一种拓扑关系的蛇纹石化橄榄岩的剪切波分裂特征取决于岩石中橄榄石的LPO强度、蛇纹石的含量及其LPO强度。一般来说,由橄榄石LPO形成的地震波各向异性仅为3%~5%,而由蛇纹石LPO形成的各向异性总是很强(甚至可以高达15%~25%)。所以,只要蛇纹石的含量超过20%,则蛇纹石化橄榄岩的剪切波分裂就由蛇纹石的LPO主导。如图13b所示,由蛇纹石LPO主导的剪切快波偏振方向平行于张裂隙的走向,俯冲板块上层中这些陡倾的张裂隙又垂直于板块的总体运动方向或平行于海沟走向,这就很容易解释为什么剪切快波偏振方向平行于海沟的走向。
地幔楔的地震波各向异性特征应是叶蛇纹石LPO和A型橄榄石LPO相互竞争的结果。在地幔楔内的拐角流作用下,橄榄石形成A型组构,理应使得φMW垂直于海沟走向。但是,蛇纹石化作用将改变地幔楔各向异性的样式。例如,占全岩体积约10%~20%的蛇纹石化作用几乎能全部抵消由橄榄石LPO形成的各向异性,使整体岩石近乎各向同性。如果地幔楔橄榄岩中蛇纹石的体积分数大于20%,且具有前述的第一种拓扑关系(Boudier et al.,2009),那么地幔楔整体的 φMW则受蛇纹石LPO的控制。由于蛇纹石的(001)面垂直于海沟走向,故测量到的φMW是平行于海沟的。如果上述解释是正确的,那么φMW与海沟走向的几何定向关系就是地幔楔中蛇纹石化程度与分布的度量。
嵇少丞,王茜,许志琴.2008.华北克拉通破坏与岩石圈减薄.地质学报,82(2):174-193.
Abt D L,Fischer K M,Abers G A,Protti M,González V and Strauch W.2010.Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting.J Geophys Res,115,B06316,doi:10.1029/2009JB006710.
Abt D L,Fischer K M,Abers G A,Strauch W,Protti M and González V.2009.Shear wave anisotropy beneath Nicaragua and Costa Rica:Implications for flow in the mantle wedge.Geochem Geophys Geosyst,Q05S15,doi:10.1029/2009GC002375.
Ando M,Ishikawa Y and Yamazaki F.1983.Shear wave polarization anisotropy in the upper mantle beneath Honshu,Japan.J Geophys Res,88(B7):5850-5864.
Audoine E,Savage M K and Gledhill K.2004.Anisotropic structure under a back arc spreading region,the Taupo Volcanic Zone, New Zealand.J Geophys Res, 109,B11305,doi:10.1029/2003JB002932.
Backus G E.1965.Possible forms of seismic anisotropy of the uppermost mantle under oceans.J Geophys Res,70:3429-3429.
Becker T W and Faccenna C.2009.A review of the role of subduction dynamics for regional and global plate motions//Lallemand S and Funiciello F.Subduction Zone Geodynamics.Berlin:Springer:3-34.
Bezacier L,Reynard B,Bass J D,Sanchez-Valle C and Van de Moortèle B.2010.Elasticity of antigorite,seismic detection of serpentinites and anisotropy in subduction zones.Earth Planet Sci Lett,289:198-208.
Bostock B C,Hyndman R D,Rondenay S and Peacock S M.2002.An inverted continental Moho and the serpentinization of the forearc mantle.Nature,417:536-538.
Boudier F,Baronnet A and Mainprice D.2009.Serpentine mineral replacements of natural olivine and their seismic implications:Oceanic lizardite versus subduction-related antigorite.J Petrol,51:495-512.
Bowman J R and Ando M.1987.Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone.Geophys J R Astron Soc,88:25-41.
Brocher T M,Parsons T,Trehu A M,Snelson C M and Fisher M A.2003.Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin.Geology,31:267-270.
Brodie K H and Rutter E H.1987.The role of transiently finegrained reaction products in syntectonic metamorphism:Natural and experimental examples.Can J Earth Sci,24:556-564.
Buttles J and Olson P.1998.A laboratory model of subduction zone anisotropy.Earth Planet Sci Lett,164:245-262.
Carter N L and Ave Lallemant H G.1970.High temperature flow of dunite and peridotite.Geol Soc Amer Bull,81:2181-2202.
Chenak L J and Hirth G.2010.Deformation of antigorite serpentinite at high temperature and pressure.Earth Planet Sci Lett,296:23-33.
Christensen D H and Abers G A.2010.Seismic anisotropy under central Alaska from SKS splitting observations.J Geophys Res,115,B04315,doi:10.1029/2009JB006712.
Christensen N I.2004.Serpentine,peridotites and seismology.Int Geol Rev,46:795-816.
Couvy H,Frost D J,Heidelbach F,Nyilas K,Ungar T and Mackwell S.2004.Shear deformation experiments of forsterite at 11 GPa-1400℃ in the multianvil apparatus.Eur J Mineral,16:877-889.
Crampin S and Booth D C.1985.Shear-wave polarizations near the North Anatolian fault,II,Interpretation in terms of crackinduced anisotropy.Geophys J R Astron Soc,83:75-92.
Currie C A,Cassidy J F,Hyndman R and Bostock M G.2004.Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton.Geophys J Int,157:341-353.
DeShon H R and Schwartz S Y.2004.Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula,Costa Rica.Geophys Res Lett,31,doi:10.1029/2004GL021179.
Dewandel B,Boudier F,Kern H,Warsic W and Mainprice D.2003.Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite.Tectonophys,370:77-94.
Escartin J,Hirth G and Evans B W.2001.Strength of slightly serpentinized peridotites:Implications for the tectonics of oceanic lithosphere.Geology,29(11):1023-1026.
Evans B W.1977.Metamorphism of alpine peridotites and serpentinites.Annu Rev Earth Planet Sci,5:397-448.
Evans B W.2004.The serpentinite multisystem revisited:Chrysotile is metastable.Int Geol Rev,46:479-506.
Faccenda M,Burlini L,Gerya T V and Mainprice D.2008.Fault-induced seismic anisotropy by hydration in subducting oceanic plates.Nature,455:1097-1101.
Fischer K M and Wiens D A.1996.The depth distribution of mantle anisotropy beneath the Tonga subduction zone.Earth Planet Sci Lett,142:253-260.
Fischer K M,Parmentier E M,Stine A R and Wolf E R.2000.Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc.J Geophys Res,105:16181-16191.
Fouch M J and Fischer K M.1996.Mantle anisotropy beneath northwest Pacific subduction zones.J Geophys Res,101:15987-16002.
Frederiksen A W,Folsom H and Zandt G.2003.Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip.Geophys J Int,155:200-212.
Fukao Y.1984.Evidence from core-reflected shear waves for anisotropy in the earth′s mantle.Nature,309:695-698.
Funiciello F,Faccenna C,Heuret A,Lallemand S,Di Giuseppe E and Becker T W.2008.Trench migration,net rotation and slab-mantle coupling.Earth Planet Sci Lett,271:233-240.
Funiciello F,Moroni M,Piromallo C,Faccenna C,Cenedese A and Bui H A.2006.Mapping mantle flow during retreating subduction:Laboratory models analyzed by feature tracking.JGeophysRes, 111, B03402, doi:10.1029/2005JB003792.
Godfrey N J,Christensen N I and Okaya D A.2000.Anisotropy of schists:Contributions of crustal anisotropy to active source seismic experiments and shear wave splitting observations.J Geophys Res,105(B12):27991-28007.
Graeber F M and Asch G.1999.Three dimensional models of P-wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data.J Geophys Res,104:20237-20256
Grant K J,Kohn S C and Brooker R A.2007.The partitioning of water between olivine,orthopyroxene and melt synthesised in the system albite-forsterite-H2O.Earth Planet Sci Lett,260:227-241
Gripp A E and Gordon R G.2002.Young tracks of hot spot and current plate velocities.Geophys J Int,150:321-361.
Hammond J O S,Wookey J,Kaneshima S,Inoue H,Yamashina T and Harjadi P.2010.Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear-wave splitting.Phys Earth Planet Inter,178:189-201.
Herquel G,Wittlinger G and Guilbert J.1995.Anisotropy and crustal thickness of northern-Tibet:New constraints for tectonic modelling.Geophys Res Lett,22(14):1925-1928.
Hess H H.1964.Seismic anisotropy of the uppermost mantle under oceans.Nature,203:629-631.
Heuret A and Lallemand S.2005.Plate motions,slab dynamics and back-arc deformation.Phys Earth Planet Inter,149:31-51.
Hilairet N,Reynard B,Wang Y,Daniel I,Merkel S and Nishiyama N.2007.High-pressure creep of serpentine,interseismic deformation and initiation of subduction.Science,318:1910-1913.
Hirauchi K I and Yamaguchi H.2007.Unique deformation processes involving the recrystallization of chrysotile within serpentinite:Implications for aseismic slip events within subduction zones.Terra Nova,19(6):454-461.
Hirauchi K I,Katayama I,Uehara S,Miyahara M and Takai Y.2010.Inhibition of subduction thrust earthquakes by lowtemperature plastic flow in serpentine.Earth Planet Sci Lett,295:349-57.
Hirth G and Kohlstedt D L.1996.Water in the oceanic upper mantle—Implications for rheology,melt extraction and the evolution of the lithosphere.Earth Planet Sci Lett,144:93-108.
Hoernle K,Abt D L,Fischer K M,Nichols H,Hauff F and Abers G P.2008.Geochemical and geophysical evidence for arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua.Nature,451:1094-1098.
Houseman G A and Gubbins D.1997.Deformation of subducted oceanic lithosphere.Geophysical Journal International,131:535-551.
Hsui A T,Tang X M and Toksoz M N.1990.On the dip angle of subducting plates.Tectonophpsics,179:163-175.
Huang Z,Zhao D and Wang L.2011.Shear wave anisotropy in the crust,mantle wedge and subducting Pacific slab under northeast Japan.Geochem Geophys Geosyst,12,Q01002,doi:10.1029/2010GC003343.
Hyndman R D and Peacock S M.2003.Serpentinization of the forearc mantle.Earth Planet Sci Lett,212:417-432.
Ji S C.2008.Deformation Mechanisms,Rheology and Seismic PropertiesofRocks.Beijing:GeologicalPublication House:539.
Ji S C and Salisbury M.1993.Shear-wave velocities,anisotropy and splitting in the high grade mylonites.Tectonophysics,221:453-473.
Ji S C and Zhao P.1994.Layered rheological structure of subducting oceanic lithosphere.Earth Planet Sci Lett,124:75-94.
Ji S C,Rondenay S,Mareschal M and Senechal G.1996.Obliquity between seismic and electrical anisotropies as an indicator of movement sense for ductile mantle shear zones.Geology,24:1033-1036.
Ji S C,Wang Q and Xia B.2002.Handbook of seismic properties of minerals,rocks and ores.Montreal:Polytechnic International Press:630.
Ji S C,Wang Q and Salisbury M H.2009.Composition and tectonic evolution of the Chinese continental crust constrained by Poisson′s ratio.Tectonophysics,463:15-30.
Ji S C,Wang Q and Xu Z Q.2007.Reply to the comment of S.Karato on"Petrofabrics and seismic properties of garnet peridotites from the USP Sulu Terrane(China)"by Xu et al.[Tectonophysics421(2006):111-127].Tectonophysics,429:291-296.
Ji S C,Wang Q,Xia B and Marcotte D.2004.Mechanical properties of multiphase materials and rocks:A simple phenomenological approach using generalized means.J Struct Geol,26:1377-1390.
Ji S C,Zhao X,Francis D.1994.Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska.Tectonophysics,239:1-27.
Jiao W,Silver P G,Fei Y and Prewitt C T.2000.Do intermediate-and deep-focus earthquakes occur on preexisting weak zones?An examination of Tonga subduction zone.J Geophys Res,105:28125-28138.
Jung H and Karato S.2001.Water-induced fabric transitions in olivine.Science,293:1460-1463.
Jung H,Katayama I,Jiang Z,Hiraga T and Karato S.2006.Effect of water and stress on the lattice-preferred orientaion of olivine.Tectonophysics,421:1-22.
Jung H,Mo W and Green H W.2009.Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine.Nat Geosci,2:73-77.
Kamiya S and Kobayashi Y.2000.Seismological evidence for the existence of serpentinized wedge mantle.Geophys Res Lett,27:819-822.
Karato S.1986.Does partial melting reduce the creep strength of the upper mantle?Nature,319:309-310.
Karato S.2002.The Dynamics Structure of the Deep Earth:An Interdisciplinary Approach.New Jersey:Princeton and Oxford:241.
Karato S and Wu P.1993.Rheology of the upper mantle:A synthesis.Science,260:771-778.
Karato S,Jung H,Katayama I and Skemer P.2008.Geodynamic significance of seismic anisotropy of the upper mantle:New insights from laboratory studies.Annu Rev Earth Planet Sci,36:59-95.
Katayama I and Karato S.2006.Effects of temperature on the B-to C-type fabric transition in olivine.Phys Earth Planet Int,157:33-45.
Katayama I,Hirauchi K I,Michibayashi K and Ando J I.2009.Trench-parallel anisotorpy produced by serpentine deformation in the hydrated mantle wedge.Nature,461:1114-1118.
Katayama I,Jung H and Karato S.2004.New type of olivine fabric from deformation experiments at modest water content and low stress.Geology,32:1045-1048.
Kendall J M.1994.Teleseismic arrivals at a mid-ocean ridge:Effects of mantle melt and anisotropy.Geophys Res Lett,21:301-304.
Kern H,Liu B and Popp T.1997.Relation between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite.J Geophys Res,102:3051-3065.
Kincaid C and Griffiths R W.2003.Laboratory models of the thermal evolution of the mantle during rollback subduction.Nature,425:58-62.
Kneller E A,Long M D and van Keken P E.2008.Olivine fabric transitions and shear-wave anisotropy in the Ryukyu subduction system.Earth Planet Sci Lett,268:268-282.
Kneller E A,van Keken P E,Karato S and Park J.2005.B-type fabric in the mantle wedge:Insights from high-resolution non-Newtonian subduction zone models.Earth Planet Sci Lett,237:781-797.
Kneller E A,van Keken P E,Katayama I and Karato S.2007.Stress,strain and B-type olivine fabric in the fore-arc mantle:Sensitivity tests using high-resolution steady-state subduction zone models.J Geophys Res,112,doi:10.1029/2006JB004544.
Kumazawa M and Anderson O L.1969.Elastic moduli,pressure derivatives and temperature derivatives of single-crystal olivine and single-crystal forsterite.J Geophys Res,74:5961-5972.
Levin V,Droznin D,Park J and Gordeev E.2004.Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka.Geophys J Int,158:1009-1023.
Li C,van der Hilst R D,Engdahl E R and Burdick S.2008.A new global model for P wave speed variations in Earth′s mantle.Geochem Geophys Geosyst,9,Q05018,doi:10.1029/2007GC001806.
Li L,Raterron P,Weidner D and Chen J.2003a.Olivine flow mechanisms at 8 GPa.Phys Earth Planet Inter,138:113-129.
Li L,Weidner D,Raterron P,Chen J and Vaughan M.2004.Stress measurements of deforming olivine at high pressure.Phys Earth Planet Inter,143:357-367.
Li T F,Yang J S and Zhang R Y.2003b.Peridotite from the pre-pilot hole(PP1)of Chinese continental scientific drilling project and its bearing on depleted and metasomatic upper mantle.Acta Geol Sin,77:492-509.
Long M D and Becker T W.2010.Mantle dynamics and seismic anisotropy.Earth Planet Sci Lett,297:341-354.
Long M D and Silver P G.2008.The subduction zone flow field from seismic anisotropy:A global view.Science,319:315-318.
Long M D and Silver P G.2009.Mantle flow in subduction systems:The subslab flow field and implications for mantle dynamics.J Geophys Res,114,B10312,doi:10.1029/2008JB006200.
Long M D and van der Hilst R D.2005.Upper mantle anisotropy beneath Japan from shear wave splitting.Phys Earth Planet Inter,151:206-222.
Long M D and van der Hilst R D.2006.Shear wave splitting from local events beneath the Ryukyu arc:Trench-parallel anisotropy in the mantle wedge.Phys Earth Planet Inter,155:300-312.
Mainprice D.2007.Seismic anisotropy of the deep Earth from a mineral and rock physics perspective//Schubert G.Treatise on Geophysics,2:437-492.
Mainprice D and Silver P.1993.Interpretation of SKS-waves using samples from the sub-continental lithosphere.Phys Earth Planet Inter,78:257-280.
Marson-Pidgeon K M,Savage K,Gledhill K and Stuart G.1999.Seismic anisotropy beneath the lower half of the North Island,New Zealand.J Geophys Res,104:20277-20286.
McKenzie D.1979.Finite deformation during fluid flow.Geophys J,58:689-715.
McNamara D E,Owens T J,Silver P G and Wu F.1994.Shear wave anisotropy beneath the Tibetan Plateau.J Geophys Res,99(B7):13655-13665.
Michibayashi K,Tasaka M,Ohara Y,Ishii T,Okamoto A and Fryer P.2007.Variable microstructure of peridotite samples from the southern Mariana Trench:Evidence of a complex tectonic evolution.Tectonophysics,444:111-118.
Mizukami T,Wallis S R and Yamamoto J.2004.Natural example of olivine lattice preferred orientation patterns with a flow-nomal a-axis maximum.Nature,427:29-32.
Moore D E and Lockner D A.2007.Comparative deformation behavior of minerals in serpentinized ultramafic rock:Application to the slab-mantle interface in subduction zones.Int Geol Rev,49:401-415.
Moore D E,Lockner D A,Summers R,Ma S and Byerlee J D.1996.Strength of chrysotile-serpentinite gouge under hydrothermal conditions:Can it explain a weak San Andreas fault?Geology,24:1041-1044.
Morgan P J,Hasenclever J,Hort M,Rüpke L and Parmentier E M.2007.On subducting slab entrainment of buoyant asthenosphere.Terra Nova,19:167-173.
Nakajima J and Hasegawa A.2004.Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northern Japan.Earth Planet Sci Lett,225:365-377.
Nicolas A and Christensen N I.1987.Formation of anisotropy in upper mantle peridotites—A review //Fuchs K and Froideoaux C.Composition,Structure and Dynamics of the Lithosphere-AsthenosphereSystem.Washington D C:AGU,16:111-123.
Okaya D,Christensen N I,Stanley D and Stern T.1995.Crustal anisotropy in the vicinity of the Alpine Fault zone,South Island,New Zealand.J Geol Geophys,38:579-583.
Ozacar A A and Zandt G.2004.Crustal seismic anisotropy in central Tibet:Implications for deformational style and flow in the crust.Geophys Res Lett,31, doi:10.1029/2004GL021096.
Padron-Navarta J A,Hermann J,Garrido C J,Sánchez-Vizcaíno V L and Gómez-Pugnaire M T.2010.An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite.Contrib Mineral Petrol,159:25-42.
Peyton V V,Levin J,Park M,Brandon M,Lees J,Gordeev E and Ozerov A.2001.Mantle flow at a slab edge:Seismic anisotropy in the Kamchatka region.Geophys Res Lett,28:379-382.
Piromallo C,Becker T W,Funiciello F and Faccenna C.2006.Three-dimensional instantaneous mantle flow induced by subduction.Geophys Res Lett,33,L08304.doi:10.1029/2005GL025390.
Polet J,Silver P G and Beck S.2000.Shear wave anisotropy beneath the Andes from the BANJO,SEDA and PISCO experiments.J Geophys Res,105:6287-6304.
Pozgay S H,Wiens D A,Conder J A,Shiobara H and Sugioka H.2007.Complex mantle flow in the Mariana subduction system:Evidence from shear wave splitting.Geophys J Int,170:371-386.
Pulford A,Savage M and Stern T.2003.Absent anisotropy:The paradox of the Southern Alps orogen.Geophys Res Lett,30(20),2051,doi:10.1029/2003GL017758.
Ranero C R,Villasenor A,Morgan P J and Weinrebe W.2005.Relationship between bend-faulting at trenches and intermediate-depth seismicity.GeochemGeophysGeosyst, 6,Q12002,doi:10.1029/2005GC000997.
Raterron P,Chen J,Li L,Weidner D and Cordier P.2007.Pressure-induced slip-system transition in forsterite:Singlecrystal rheological properties at mantle pressure and temperature.Am Mineral,92:1436-1445.
Raterron P,Wu Y,Weidner D J and Chen J.2004.Low-temperature olivine rheology at high pressure.Phys Earth Planet Inter,145:149-159.
Ribe N M.1989.Seismic anisotropy and mantle flow.J Geophys Res,94:4123-4223.
Ringwood A.1991.Phase transformations and their bearings on the constitution and dynamics of the mantle.Geochem Cosmochem Acta,55:2083-2110.
Russo R M.2009.Subducted oceanic asthenosphere and upper mantle flow beneath the Juan de Fuca slab.Lithosphere,1:195-205.
Russo R M and Silver P G.1994.Trench-parallel flow beneath the Nazca plate from seismic anisotropy.Science,263:1105-1111.
Salah M K,Seno T and Iidaka T.2008.Upper mantle anisotropy beneath central and southwest Japan:An insight into subduction-induced mantle flow.J Geodyn,46:21-37.
Saruwatari K,Ji S C,Long C X and Salisbury M H.2001.Seismic anisotropies of mantle xenoliths and constraints on the upper mantle structures beneath the southern Canadian Cordillera.Tectonophysics,339:399-422.
Savage M K.1999.Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?Rev Geophys,37:65-106.
Schellart W P,Freeman J,Stegman D R,Moresi L and May D.2007.Evolution and diversity of subduction zones controlled by slab width.Nature,446:308-311.
Schmidt M W and Poli S.1998.Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation.Earth Planet Sci Lett,163:361-379.
Seno T,Zhao D,Kobayashi Y and Nakamura M.2001.Dehydration of serpentinized slab mantle:Seismic evidence from southwest Japan.Earth Planets Space,53:861-871.
Sherrington H F,Zandt G and Frederiksen A.2004.Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters.J Geophys Res,109,B02312,doi:10.1029/2002JB002345.
Shih X R,Schneider J F and Meyer R P.1991.Polarities of P and S waves and shear wave splitting observed from the Bucaramanga nest,Colombia.J Geophys Res,96(B7):12069-12082.
Silver P G.1996.Seismic anisotropy beneath the continents:Probing the depths of geology.Annu Rev Earth Planet Sci,24:385-432.
Skemer P,Katayama I and Karato S.2006.Deformation fabrics of the Cima di Gagnone Peridotite Massif,Central Alpes,Swizerland:Evidence of deformation under water-rich conditions at low temperatures.Contrib Mineral Petrol,152:43-51.
Smith G P,Wiens D A,Fischer K M,Leroy M D,Webb S C and Hildebrand J A.2001.A complex pattern of mantle flow in the Lau back-arc.Science,292:713-716.
Stegman D R,Freeman J,Schellart W P,Moresi L and May D.2006.Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback.Geochem Geophys Geosyst,7,Q03012,doi:10.1029/2005GC001056.
Tackley P J.2008.Geodynamics:Layer cake or plum pudding?Nat Geosci,1:157-158.
Tasaka M,Michibayashi K and Mainprice D.2008.B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab.Earth Planet Sci Lett,272:747-757.
Ulmer P and Trommsdorff V.1995.Serpentine stability to man-tle depths and subduction-related magmatism.Science,268:858-861.
Van der Hilst R D,Widiyantoro S and Engdahl E R.1997.Evidence for deep mantle circulation from global tomography.Nature,386:578-584.
Vinnik L P,Makeyeva L I and Milev A.1992.Global patterns of azimuthal anisotropy and deformations in the continental mantle.Geophys J Int,111:433-447.
Wada I,Wang K,He J and Hyndman R D.2008.Weakening of the subduction interface and its effects on surface heat flow,slab dehydration and mantle wedge serpentinization.JGeophysRes, 113, B04402, doi:10. 1029/2007JB005190.
Wang Q and Ji S C.2009.Poisson′s ratio of crystalline rocks as a function of hydrostatic confining pressure.J Geophys Res,114,B09202,doi:10.1029/2008JB006167.
Wang Q,Ji S C,Salisbury M,Xia B,Pan M B and Xu Z Q.2005.Shear wave properties and Poisson′s ratios of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt,China:Implications for the crustal composition.J Geophys Res,110,doi:10.1029/2004JB003435.
Watanabe T,Kasami H and Ohshima S.2007.Compressional and shear wave velocities of serpentinized peridotites up to 200MPa.Earth Planets Space,59(4):233-244.
Wirth E and Long M D.2010.Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones.Phys Earth Planet Inter,181:141-154.
Wookey J,Kendall J M and Rumpker G.2005.Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting.Geophys J Int,161:829-838.
On the Formation of Seismic Anisotropy and Shear Wave Splitting in Oceanic Subduction Zones
SUN Shengsi1and JI Shaocheng1,2
(1.Département des Génies Civil,Géologique et des Mines,école Polytechnique de Montréal,Montréal H3C3A7,Canada;2.Institute of Geology,Chinese Academy of Geological Sciences;Key Laboratory of Continental Dynamics,Ministry of Land and Resources,Beijing100037,China)
Subduction zones are critically important regions where significant geological processes(e.g.,phase transition,dehydration,partial melting,volcanism,and seismic activity)take place.Seismic anisotropy formed by different parts of subduction system(i.e.,the overriding plate,the mantle wedge,the subducting slab,and the subslab mantle)can be distinguished by analyzing seismic wave raypaths.Here we provide a state-of-art overview on shear wave splitting patterns measured from global oceanic subduction zones,and on mechanism models[e.g.,2D corner flow,3D trench-parallel flow induced by trench migration,olivine lattice preferred orientations(LPO)and serpentinization].Olivine LPOs formed by(010)[100],(010)[001],(100)[001],{0kl}[100],(001)[100]and{110}[001]slip systems are identified as A,B,C,D,E and F-type fabrics,respectively.The A,D,and E-type fabrics cause fast polarization directions(φ)parallel to the mantle flow while φ formed by B-type fabric is perpendicular to the mantle flow.Olivine C-type LPO also results in a φ parallel to the mantle flow,but the resultant delay time(δt)is much smaller than that of A-type.F-type fabric results in almost no splitting in the direction normal to the mantle flow plane.In mantle wedge and subducting lithosphere mantle,the most important hydrous mineral is antigorite,which is characterized by extremely low flow strength,low seismic velocities,and high elastic anisotropy.Accordingly,the extensively serpentinized mantle wedge rocks usually have relative high seismic anisotropy and shear wave splitting.If more than 10%~20%serpentinization occurs,serpentine LPO would control the seismic anisotropy of the deformed mantle rocks.As the shear wave splitting in mantle wedge depends on both the degree of serpentinization and the slab dip,those highly serpentinized and steeply dipped subduction systems are more likely to produce a trench-parallel φ.
oceanic subduction zones;seismic anisotropy;shear wave splitting;olivine fabric;trench migration;serpentinization;mantle wedge
P541;P315.2
A
1001-1552(2011)04-0628-020
2011-07-08
项目资助:加拿大自然科学与工程委员会(NSERC)和中国地质调查局地质调查项目基金资助。
孙圣思(1985-),女,博士研究生,主要从事岩石物理、构造地质学研究。
嵇少丞,Email:sji@polymtl.ca