牧草中水溶性碳水化合物及其影响因素
2011-06-08黄德君毛祝新傅华
黄德君,毛祝新,傅华
(兰州大学草地农业科技学院,甘肃 兰州730020)
植物中水溶性碳水化合物(water soluble carbohydrate,WSC)是指构成植物细胞壁及细胞内容物中可溶或易溶性碳水化合物的总称[1],主要包括果聚糖、葡萄糖、果糖、蔗糖、棉子糖和水苏糖等。一些研究表明,提高饲草中WSC含量可以促进反刍动物对蛋白质的利用[2]和干物质的吸收[3-5],提高奶蛋白产量[5],减少温室气体的排放[6-10]。显然提高牧草中WSC的含量,对反刍家畜生产和减少环境污染具有重要意义。牧草中WSC的含量与遗传、环境和生长时期等因素密切相关[11-14]。本研究就遗传与环境等因素对牧草WSC的影响及机理方面的研究进展进行综述,旨在为进一步的深入研究提供参考。
1 牧草种、生长时期与部位
1.1 牧草种与品种
牧草WSC的含量及各组分的比例与其遗传特性有关,不同的牧草种、品种含量差异很大(表1)。一般禾本科牧草的WSC总量比豆科牧草的高12%~15%[15,16],且果聚糖含量高于豆科牧草,青贮时不用添加剂就可稳定发酵[17]。温带禾本科牧草中,黑麦草 WSC含量最高,有些品种达干物质的30%以上,鸡脚草最低,仅4%[18-20]。豆科牧草小叶锦鸡儿和白三叶WSC含量高于沙打旺和小冠花[16]。同种牧草生长在热带其WSC含量低于温带[6,7]。同种牧草的不同品种间WSC含量也有差异:Henderson[19]分析了多年生黑麦草的二倍体和四倍体材料后,发现四倍体WSC含量高于二倍体[21,22],Volaire和Lelievre[23]在鸡脚草的研究中也得到类似结论。在相同处理条件下,同一部位意大利黑麦草 WSC含量高于多年生黑麦草[24-26]。Sanada等[20]研究表明,晚熟品种的鸡脚草比早熟品种WSC含量高。
1.2 生长时期
牧草WSC含量的日变化受光合作用的影响,其含量从清晨到傍晚先逐渐增加,而后下降[38,45,46]。Lechtenberg等[46]研究高羊茅得出,这种日变化主要由蔗糖和葡萄糖含量变化引起。牧草WSC的季节变化从萌动开始增加到展叶期含量有所下降,而后很快增加,一年内可能出现一个或多个峰值,峰值的出现因环境而异[47]。通常禾本科牧草在开花前WSC的含量最高[48]。Waite和Boyd[18]通过田间试验证明,多年生黑麦草茎基部 WSC含量在营养生长期积累,在生殖生长期减少,此时WSC转化为淀粉储存在种子中。这一结论在后续研究中在多种植物中被证实[30,49]。
表1 各种牧草中WSC含量Table 1 The content of water-soulble carbohydrate in a variety of grass
1.3 牧草部位
WSC在牧草各组织器官中并不均匀分配[24],牧草茎基部和根(根茎、鳞茎)中所含WSC一般较多,但是禾本科植物的叶鞘也是WSC贮存的主要器官[50,51],另外,在牧草生长组织(叶伸长区、根尖)WSC含量较高;土壤水分条件良好的植株叶基部WSC最高,比叶鞘高2倍以上,且幼嫩叶片比成熟叶片的WSC含量高[52]。意大利黑麦草残茬中的WSC含量最高,随后是伸长及扩展的叶片和根,这主要是因为叶鞘没有从残茬中分离出来,所以残茬碳水化合物的水平较高,又由于伸长的叶片代谢比扩展的叶片高,导致增加的果聚糖存储在伸长的叶片组织中[28]。Turner等[53]发现鸡脚草与雀麦茎秆中距地面11~20mm区域WSC含量最高,且70%WSC集中在2种牧草0~60mm的茎中,鸭茅茎中离地面41~100mm部分WSC含量基本稳定,而雀麦为逐渐减少(表2)。且茎基部-根冠的WSC介于根与茎之间[26],茎节比节间的WSC含量低[24],但也有研究发现鸡脚草和牛尾草(Festucaelatior)茎叶部 WSC含量高于根部[54]。
2 环境
2.1 水分
水分胁迫影响植物体中碳水化合物代谢过程。一些试验表明,在干旱前期,牧草的 WSC[55,56]和果聚糖含量增加[23],随着胁迫加剧,WSC含量减少[57,58],即干旱胁迫时,植物体内WSC含量表现为先增加后减少的趋势[59]。Thomas[57]认为多年生黑麦草蔗糖和果聚糖含量在干旱时增加,低聚三糖、四糖含量降低。鸡脚草在干旱50d后叶组织中WSC含量增加40%~50%[23]。但也有试验发现,在干旱条件下,多年生黑麦草茎基部组织的蔗糖和己糖浓度增加,而果聚糖和其他 WSC含量减少[60,61],主要是因为干旱时果聚糖水解为小分子化合物,增加了植物的渗透势,降低水势[60],增加植物的抗干旱能力[61,62]。而水分胁迫条件下,鸡脚草体内果聚糖含量增加,但水解过程也有所加强[23]。
Jiang和Wang[63]发现在水淹胁迫条件下,匍匐翦股颖(Agrostisstolonifera)芽的WSC含量增加,这主要是缺氧条件下,牧草根和芽的碳水化合物含量增加[64]。
表2 牧草各部位WSC的含量[53]Table 2 The water-soluble carbohydrate relations to segment of grasses
2.2 温度
植物光合和呼吸作用是在一系列酶促反应下完成,温度通过调节酶的活性来影响植物体内的生化反应。Baker和Jung[65]对梯牧草、雀麦、鸡脚草和草地早熟禾进行温度控制试验,结果显示,夜晚温度从1.8℃增加到18.3℃几种牧草WSC含量减少的幅度大于白天温度从18.3℃增加到34.8℃,因为适宜地增加白天温度可使光合作用和呼吸作用都增强,而增加夜晚温度特别是高于最适温度仅使植物的呼吸作用增强[66]。低温使WSC含量增加[11,67],植物根中的 WSC含量在低温(1.2~2.3℃)要比高温(20.4~32.7℃)高近3倍[68]。冬季在光照充足且温度适宜时,牧草 WSC浓度最高[69-71],主要是由于这时有较低的呼吸速率,Sanada等[37]发现 WSC含量与鸡脚草的抗寒性呈正相关关系。由此可见,在低温条件下,牧草叶片中可溶性糖的积累是其适应低温环境的一种反应。
2.3 光照
光照强度和光照时间影响植物的光合速率和WSC含量。黑麦草WSC含量在相同温度条件下(白天15℃,晚间10℃),低光照强度(90g/kg DM)仅是高光照强度的1/4[72]。Fulkerson和 Trevaskis[73]研究表明,叶片和刈割后残茬中的WSC含量变化与每天的光照时间和太阳辐射量呈正相关关系,但是在试验最后6d的阴云天气下,残茬和叶片的WSC含量下降50%以上。Mackenzie和Wylam[74]发现遮光的黑麦草蔗糖含量在24h内迅速下降,而果聚糖含量在24h后保持不变,48h后稍有减少。Ciavarella等[38]观察喜湿虉草遮光后除蔗糖以外的WSC成分都减少,但是在除去遮盖物2~4h后,减少的量又恢复,Waite和Boyd[18]及 Marais等[75]在意大利黑麦草的研究中也得出相同结论。由此可见,减少光照强度会降低牧草WSC含量。
2.4 盐分
可溶性糖既是植物生长中合成其他有机物的碳架和能量来源,又是渗透调节物质,盐胁迫对WSC含量也有影响。刘华等[36]对2年生的碱茅经硫酸盐混合液处理约半月之后,发现其叶片和根系中非结构性碳水化合物(淀粉+可溶性糖)含量在低盐和高盐胁迫下均降低。肖强等[35]对不同盐浓度溶液培养的互花米草研究表明,在高盐度(50‰)海水下,互花米草叶片中可溶性糖含量随盐浓度增加总体上呈上升趋势。Chiy和Phillips[15]研究了添加钠对白三叶和多年生黑麦草的影响,发现钠盐使多年生黑麦草WSC含量增加,而使白三叶减少。这可能是由于钠使豆科牧草固氮能力增强,导致固氮菌消耗了较多的WSC,使植物WSC含量减少[76];而在多年生黑麦草中钠可以刺激液泡膜上的ATP酶活性,来增加蔗糖含量[77],或者在喜钠植物中激活淀粉合成酶增加WSC的含量。
3 管理
3.1 氮、磷、钾
氮素是构成蛋白质的主要成分,能促进植物的光合作用和干物质生产,是植物生长的重要元素之一。土壤中矿物质缺乏时,牧草体内部分有机化合物不能合成,使得WSC的利用率降低,含量相对增加。但长期缺乏会使牧草的生长受阻,叶面积也会受到影响,最终WSC含量也会下降,因此,适量施肥(氮、钾)增加牧草WSC含量[75,78-80],只有过多施用时,WSC才会降低[81]。但更多的研究表明,增施氮肥可增加牧草中粗蛋白含量,降低WSC含量[82-84]。Reid和Strachan[82]对多年生黑麦草进一步研究发现,牧草粗蛋白含量增加一个单位,WSC含量降低一个单位,但是这种增加是短期的。氮肥的长期施用可以提高牧草产量和 WSC含量[72,85],这是因为氮肥施加以后经过一段时间,牧草吸收利用增加了植株光合叶面积而使 WSC含量增加[86]。李焰焰[81]研究表明,氮肥分次施用比一次基施对提高小黑麦(Triticale)生育中期(拔节到抽穗)的全株可溶性糖含量效果要好。磷、钾等的缺乏常导致植株光合效率下降,光抑制增强,从而使植株光合产物的积累减少,进而影响光合产物的运转分配。但是牧草中此类研究报道较少,仅有一些缺磷、钾对大豆(Glycinemax)、菜豆(Phaseolusvulgaris)等水溶性碳水化合物在植物中的含量和分配的研究报道[87]。
3.2 CO2浓度
CO2是植物光合作用的原料,但大气中的CO2一般不能满足植物光合作用的需求,所以它常是光合作用的限制因子[88]。因此,CO2可作为肥料,提高环境中CO2的浓度能够增加豆科牧草苜蓿[89]和落地三叶草叶片中的淀粉含量[90]。Baxter等[91]在CO2浓度分别为680和340μmol/mol条件下比较了细弱翦股颖(A.capillaris)、F.vivipara和高山早熟禾3种牧草中WSC含量的变化,发现105d后,高浓度下F.vivipara及高山早熟禾叶片及叶鞘WSC含量增加,而细弱翦股颖在58d后,叶片和叶鞘WSC减少;高浓度的CO2使F.vivipara及细弱翦股颖根部的WSC分别减少25%和55%,但对高山早熟禾根部WSC含量没有影响。Baxter等[91]也证明短期在适宜范围内提高CO2浓度,能促进植物光合同化的能力,但时间延长反而会影响光合作用的进行。
3.3 家畜采食与刈割
草地管理影响牧草体内养分分配及其含量。Grant等[92]报道,增加家畜采食和刈割的强度(减少留茬高度,会导致多年生黑麦草中的WSC含量减少[93,94]。Donaghy[95]证实家畜的采食间隔时间越短,牧草中WSC含量就越低,这一结论与Fulkerson[96]研究一致。张光辉[30]发现,在羊草刈割后第1天内,牧草地上根茎部 WSC含量表现为增加的趋势,第2天开始(除蔗糖外)逐渐降低,第6天降至最低值,尤其是果聚糖和甘露醇,其降幅分别达到50%和70%;至刈割后第12天,各种WSC的含量开始逐渐增加。WSC的分配方式可刺激牧草的分蘖[30],直接影响其再生[97,98]。另外,第2茬牧草比第1茬的 WSC含量低[99]。王静等[98]对放牧干扰下冷蒿种群叶绿素、可溶性糖含量的变化进行了研究,结果表明,在不同的放牧梯度上,1年龄冷蒿,可溶性糖含量随着放牧强度的增加显著降低;在多年龄冷蒿中,可溶性糖含量随着放牧强度的增加变化不显著。
4 小结
碳水化合物代谢作为植物最基本的代谢过程之一,其在牧草体内含量的变化受到遗传、部位和不同生长时期的影响,另外温度、水分、盐等非生物胁迫均对植物WSC含量有不同程度的影响。不同营养元素对牧草WSC的代谢影响也不尽相同,在适宜范围内,能提高可溶性糖的含量,促进植物生长;而过量时,则对植物生长及可溶性糖积累起反作用。草地管理措施得当也能有效地促进可溶性糖向植物的生殖器官输入。综上所述,植物对各种外界因素的响应,均能通过植株体内可溶性碳水化合物的变化表现出来。已有研究结果表明,可溶性碳水化合物中葡萄糖、果糖、蔗糖和低聚合度的果聚糖均可能是信号物质[100]。尽管目前对植物WSC的代谢及其对各因素的响应有较为深入的了解,但是关于水溶性碳水化合物代谢对环境胁迫的响应机制尚不完全清楚,虽然“糖信号”在植物生长发育过程中的作用日益受到重视,但是各种水溶性碳水化合物作为信号物质在植物生态系统中的作用还不明确,亦有待进一步的研究。
[1]任继周.草业大辞典[M].北京:农业出版社,2008:765.
[2]Beever D E,Terry R A,Cammell S B,etal.The digestion of spring and autumn harvested perennial ryegrass by sheep[J].Journal of Agricultural Science,1978,90:463-470.
[3]Bailey R W.Pasture quality and ruminant nutrition.I.Carbohydrate composition of ryegrass varieties grown as sheep pastures[J].New Zealand Journal of Agricultural Research,1964,7:496-507.
[4]Hight G K,Sinclair D P,Lancaster R J.Some effects of shading and of nitrogen fertiliser on the chemical composition of freezedried and oven dried herbage,and on the nutritive value of ovendried herbage fed to sheep[J].New Zealand Journal of Agricultural Research,1968,11:286-302.
[5]Carruthers V R,Neil P G.Milk production and ruminal metabolites from cows offered two pasture diets supplemented with nonstructural carbohydrate[J].New Zealand Journal of Agricultural Research,1997,40:513-521.
[6]Van Soest P J.Nutrition Ecology of the Ruminant(2nd ed)[M].Ithaca,NY:Cornell Universitiy Press,1994.
[7]Kurihara M,Magner T,Hunter R A,etal.A SF6tracer technique:Methane measurements from rumi-Methane production and energy partition of cattle in the tropics[J].Washington State University,Pullman British Journal Nutrition,1999,81:227-234.
[8]孙维斌,胡建红.反刍动物瘤胃甲烷的产生及调控研究进展[J].黄牛杂志,1999,6:37-39.
[9]于震,张永根.反刍动物瘤胃甲烷的产生及调控措施[J].黑龙江畜牧兽医,2007,9:35-36.
[10]周怿,刁其玉.反刍动物瘤胃甲烷气体生成的调控[J].草食家畜,2008,4:21-24.
[11]Storozhenko V A.Effect of environmental factors on contents of water-soluble carbohydrates in pasture fodder[J].Doklady Moskovskoi Sel’skokhozyaistvennoi Akademiiim,K.A.-Timiryazeva,1972,180:201-204.
[12]Fulkerson A,Donaghy D J.Plant-soluble carbohydrate reserves and senescence-key criteria for developing an effective grazing management system for ryegrass-based pastures:a review[J].Australian Journal of Experimental Agriculture,2001,41:261-275.
[13]裴彩霞.牧草中的水溶性碳水化合物[J].四川草原,2005,6:13-16.
[14]史建伟,张育平,王孟本,等.植物体内非结构性碳水化合物变化及其影响因素[J].湖北农业科学,2008,47(1):112-115.
[15]Chiy P C,Phillips C C.Effects of sodium fertiliser on the distribution of trace elements,toxic metals and water-soluble carbohydrates in grass and clover fractions[J].Journal of the Science of Food and Agriculture,1999,79:2017-2024.
[16]裴彩霞,董宽虎,范华.不同刈割期和干燥方法对牧草营养成分含量的影响[J].中国草地,2002,24(1):32-37.
[17]张英来.影响青贮饲料质量的因素[J].中国乳业,2002,5:14-16.
[18]Waite R,Boyd J.The water-soluble carbohydrates of grasses.1.Changes occurring during the normal life-cycle[J].Journal of the Science of Food and Agriculture,1953,4:197-204.
[19]Henderson A R.Effect of feeding with a trytophan-free amino acid mixture on rat liver magnesium ion-activated deoxyribonucleic acid-dependent ribonucleic acid polymerase[J].Biochemical Journal,1973,33(3):291-302.
[20]Sanada Y,Takai T,Yamada T.Genetic variation in water-soluble carbohydrate concentration in diverse cultivars ofDactylis glomerataL.during vegetative growth[J].Australian Journal of Agricultural Research,2004,55:1183-1187.
[21]Jones E L,Roberts J E.A note on the relationship between palatability and water soluble carbohydrates content in perennial ryegrass[J].Irish Journal Agricultural Research,1991,30:163-167.
[22]Hageman I W,Lantinga E A,Schlepers H.Opname,voederwaarde,melkproduktie en zodekwaliteit bij beweiding van diploid en tetraloid Engels Raaigras:verslag vaneen tweejarig vergelijkend onderzoek[D].Wageningen,The Netherlands:Wageningen University,1992.
[23]Volaire F,Lelievre F.Production,presistence,and water-soluble carbohydrate accumulation in 21contrasting populations ofDactylisglomerataL.subjected to severe drought in the south of France[J].Australian Journal of Agricultural Research,1997,48(7):933-944.
[24]Wilman D,Altimimi M A K.The digestibility and chemical composition of plant parts in Italian and perennial ryegrass during primary growth[J].Journal of Science Food Agriculture,1982,33:595-602.
[25]Wilman D,Altimimi M A K.Differences between rated grasses times of year and plant parts in digestibility and chemical composition[J].Journal of Agricultural Science(Cambridge),1996,127:311-318.
[26]McGrath D.Seasonal variation in the water-soluble carbohydrates of perennial and Italian ryegrass under cutting conditions[J].Irish Journal of Agricultural Research,1988,27(23):131-139.
[27]Slack k.Growth and forage quality of prairie grass(BromuswilldenowiiKunth)in response to temperature and defoliation[D].Armidale,Nsw,Australia:University of New England,2000.
[28]Baron V S,Dick A C,Bjorge M,etal.Accumulation period for stockpiling perennial forages in the Western Canadian Prairie Parkland[J].Agronomy Journal,2005,97:1508-1514.
[29]Volaire F,Conéjero G,Lelièvre F.Drought survival and dehydration tolerance inDactylisglomerataandPoabulbosa[J].Australian Journal of Plant Physiology,2001,28:743-754.
[30]张光辉.内蒙古四种不同生活型草原植物碳水化合物的季节性动态变化及其对刈割的响应[D].山东:山东农业大学,2005:1-96.
[31]Smit H J,Tas B M,Taweel H Z,etal.Effects of perennial ryegrass(LoliumperenneL.)cultivars on herbage production,nutritional quality and herbage intake of grazing dairy cows[J].Grass and Forage Science,2005,60:297-309.
[32]Sandrin C Z,Domingos M,Figueiredo-Ribeiro R C L.Partitioning of water soluble carbohydrates in vegetative tissues ofLoliummultiflorumLam.ssp.italicum cv.Lema[J].Brazil Journal of Plant Physiology,2006,18(2):299-305.
[33]Miron J,Solomon R,Adin G,etal.Effects of harvest stage and re-growth on yield,composition,ensilage andinvitrodigestibility of new forage sorghum varieties[J].Journal of the Science of Food and Agriculture,2006,86:140-147.
[34]Tava A,Berardo N,Cunico C,etal.Cultivar differences and seasonal changes of primary metabolites and flavor constituents in tall fescue in relation to palatability[J].Journal of Agriculture and Food Chemistry,1995,43:43-98.
[35]肖强,郑海雷,陈瑶,等.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志,2005,24(4):373-376.
[36]刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,14(1):18-20.
[37]Sanada Y,Takai T,Yamada.Inheritance of the concentration of water-soluble carbohydrates and its relationship with the concentrations of fibre and crude protein in herbage of cocksfoot(DactylisglomerataL.)[J].Grass and Forage Science,2007,62:322-331.
[38]Ciavarella T A,Simpson R J,Dove H,etal.Diurnal changes in the concentration of water-soluble carbohydrates inPhalaris aquaticaL.pasture in spring,and the effect of short-term shading[J].Australian Journal of Agricultural Research,2000,51:749-756.
[39]Bertrand A,Tremblay G F,Pelletier S,etal.Yield and nutritive value of timothy as affected by temperature,photoperiod and time of harvest[J].Grass and Forage Science,2008,63:421-432.
[40]Wang Z W.Temporal variation of water-soluble carbohydrate in the rhizome clonal grassLeymuschinensisin response to defoliation[J].Journal of Plant Ecology(Chinese Version),2007,31(4):673-679.
[41]Francisco E,Govea C,Albrecht K A.Forage production and nutritive value of oat in autumn and early summer[J].Crop Science,2006,46:2382-2386.
[42]Francis S A,Chapman D F,Doyle P T,etal.Dietary preferences of cows offered choices between white clover and‘high sugar’and‘typical’perennial ryegrass cultivars[J].Australian Journal of Experimental Agriculture,2006,46:1579-1587.
[43]Kaiser A G,Dear B S,Morris S G.An evaluation of the yield and quality of oat-legume and ryegrass-legume mixtures and legume monocultures harvested at three stages of growth for silage[J].Australian Journal of Experimental Agriculture,2007,47:25-38.
[44]Fraser M D,Fychan R,Jones R.The effect of harvest date and inoculation on the yield,fermentation characteristics and feeding value of forage pea and feld bean silages[J].Grass and Forage Science,2001,56:218-230.
[45]Holt D A,Hilst A R.Daily variation in carbohydrate content of selected forage crops[J].Agronomy Journal,1969,61:239-242.
[46]Lechtenberg V L,Holt D A,Youngberg H W.Diurnal variation in nonstructural carbohydrates ofFestucaarundinacea(Schreb.)with and without N fertilizer[J].Agronomy Journal,1972,64:302-305.
[47]Chun W B,Kim D A,Dark J M.Effect of nitrogen fertilization during early growth duration on the total water-soluble carbohydrate,nitrate and crude protein coment in orchardgress[A].Proceeding of the XV International Grassland Congress[C].Kyoto,Japan,1985:504-505.
[48]Gonzalez B,Boucaud J,Salette J,etal.Fructan and cryoprotection in regrass(LoliumperenneL.)[J].New Phytologist,1990,115(2):319-323.
[49]Griffith S M.Changes in post-anthesis assimilates in stem and spike components of Italian ryegrass(LoliummultiflorumLam.).I.Water soluble carbohydrates[J].Annals of Botany,1992,69:243-248.
[50]Davies A G.The regrowth of grass swards[A].In:Jones M B,Lazenby.The Grass Crop[M].London,UK:Chapman &Hall,1988.
[51]Cairns A J,Begley P,Sims I M.The structure of starch from seeds and leaves of the fructan-accumulating ryegrass,Lolium temulentumL.[J].Journal of Plant Physiology,2002,159:221-230.
[52]Thomas H,James A R.Paretitioning of sugars inLoliumperenne(perennial ryegrass)during drought and on rewwatering[J].New Phytologist,1999,142(2):295-305.
[53]Turner L R,Donaghy D J,Lane P A,etal.Distribution of water-soluble carbohydrate reserves in the stubble of prairie grass and Orchardgrass plants[J].Agronomy Journal,2007,99:591-594.
[54]阿不来提,石定燧.鸡脚草、牛尾草在放牧条件下体内糖分含量积累动态与再生速度关系的研究[J].草业科学,1995,12(3):26-29.
[55]Busso C A,Richards J H,Chatterton N J.Nonstructural carbohydrates and spring regrowth of two cool-season grasses:interaction of drought and clipping[J].Journal of Range Management,1990,43:336-343.
[56]Chaves M M.Effects of water deficits on carbon assimilation[J].Journal of Experimental Botany,1991,42:1-16.
[57]Thomas H.Accumulation and consumption of solutes in swands ofLoliumperenneduring drought and after rewatering[J].New Phytologist,1991,118:35-48.
[58]宋海鹏,刘君,李秀玲,等.干旱胁迫对5种景天属植物生理指标的影响[J].草业科学,2010,27(1):11-15.
[59]Volaire F,Thomas H.Effects of drought on water relations,mineral uptake,water-soluble carbohydrate accumulation and survival of two contrasting populations of cocksfoot(DactylisglomerataL.)[J].Annals of Botany,1995,75(5):513-524.
[60]Spollen W G,Nelson C J.Response of fructan to water deficit in growing leaves of tall fescue[J].Plant Physiology,1994,106:329-336.
[61]Boschma S P,Scott J M,Hill M J,etal.Plant reserves of perennial grasses subjected to drought and defoliation stresses on the Northern Tablelands of New South Wales,Australia[J].Australian Journal of Agricultural Research,2003,54:819-828.
[62]王齐,孙吉雄,安渊.水分胁迫对结缕草种群特征和生理特性的影响[J].草业学报,2009,18(2):33-38.
[63]Jiang Y W,Wang K H.Growth,physiological,and anatomical responses of creeping bentgrass cultivars to different depths of waterlogging[J].Crop Science,2006,46:2420-2426.
[64]Albrecht G,Biemelt S,Baumgartner S.Accumulation of fructans following oxygen deficiency stress in related plant species with different flooding tolerances[J].New Phytologist,1997,136:137-144.
[65]Baker B S,Jung G A.Effect of environmental conditions on the growth of four perennial grasses.I.Response to controlled temperature[J].Agronomy Journal,1968,60:155-158.
[66]White L M.Carbohydrate reserves of grasses:a review[J].Journal of Range Management,1973,26:13-18.
[67]Smith D.Influence of temperature on growth of Froker oats for forage.II.Concentrations and yields of chemical constituents[J].Canada Journal of Plant Science,1975,55:897-901.
[68]Li R,Volenec J J,Joern B C,etal.Seasonal changes in nonstructural carbohydrates,protein,and macronutrients in roots of alfalfa,red clover,sweetciover,and birdsfoot trefoil[J].Crop Science,1996,36:617-623.
[69]Thom E R,Sheath G W,Bryant A M.Seasonal variations in total nonstructural carbohydrate and major element levels in perennial ryegrass and paspalum in a mixed pasture[J].New Zealand Journal of Agricultural Research,1989,32:157-165.
[70]窦晶鑫,刘景双,王洋,等.土温升高对湿草甸小叶章植株碳、氮含量的影响[J].草业学报,2010,19(1):59-66.
[71]Fulkerson W J,Slack K,Hennessy D W,etal.Nutrients in ryegrass(Loliumspp.),white clover(Trifoliumrepens)and kikuyu(Pennisetumclandestinum)pastures in relation to season and stage of regrowth in a subtropical environment[J].Australian Journal of Experimental Agriculture,1998,38:227-240.
[72]Deinum B.Climate,nitrogen and grass:research into the influence of light intensity,temperature,water supply and nitrogen on the production and chemical composition of grass[J].Medelingen Landbouwhogeschool Wageningen,1964,7:11-66.
[73]Fulkerson W J,Trevaskis L M.Limitations to milk production from pasture[A].Recent Advances in Animal Nutrition in Australia‘97’[C].Armidale:University of New England,1997:159-165.
[74]Mackenzie D J,Wylam C B.The role of the laboratory in a milk control program[J].Canadian Journal of Public Health,1960,51:485-488.
[75]Marais J P,Figueiredo M D,Goodenough D C W.Dry matter and nonstructural carbohydrate content as quality parameters in aLoliummultiflorumbreeding programme[J].African Journal of Range Forage Science,1993,10:118-123.
[76]Pate J S,Layzell D B,Atkins C A.Economy of carbon and nitrogen in nodulated and nonnodulated NO3-grown legumes[J].Plant Physiology,1979,64:1083-1088.
[77]Willenbrink J.Mechanismen des zuckertransports durch membranen bei beta vulgaris[J].Kal Brief,1983,16:585-594.
[78]Kruze A,Bardzicka B,Domska D.Relationship between the contents of water-soluble carbohydrate and of nitrogenous compounds in pasture herbage depending on the level of fertilize application[J].Acta Academiae ac Techniea Olstenensis,Agricultura,1990,51:81-88.
[79]McGrath D.A note on the influence of nitrogen application and time of cutting on water soluble carbohydrate production by Italian ryegrass[J].Irish Journal of Agricultural and Food Research,1992,31:189-192.
[80]Mckenzie F R,Jacobs J L,Ryan M,etal.Effect of rate and time of nitrogen application from autumn to mid-winter on perennial ryegrass/white clover dairy pastures in western Victoria.2.Pasture nutritive value[J].Australian Journal of Agricultural Research,1999,50:1067-1072.
[81]李焰焰.施氮对中饲237-皖草2号产量及生理特性影响的研究[D].合肥:安徽农业大学,2004:1-45.
[82]Reid D,Strachan N H.The effects of a wide range of nitrogen rates on some chemical constituents of the herbage from perennial ryegrass swards with and without white clover[J].Journal of Agricultural Science,UK,1974,83(4):393-401.
[83]Rasmussen S,Parsons A J,Bassett S,etal.High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration inLoliumperenne[J].New Phytologist,2007,173:787-797.
[84]Rasmussen S,Parsons A J,Fraser K,etal.Metabolic profiles ofLoliumperenneare differentially affected by nitrogen supply,carbohydrate content,and fungal endophyte infection[J].Plant Physiology,2008,146:1440-1453.
[85]Jacobs J L,Mckenzie F R,Kearney G A.Nitrogen fertiliser effects on nutritive characteristics of perennial ryegrass during late autumn and mid-andlate winter in western Victoria[J].Australian Journal of Experimental Agriculture,2002,42:541-548.
[86]Donaghy D J,Fulkerson W J.The impact of defoliation frequency and nitrogen fertilizer application in spring on summer survival of perennial ryegrass under grazing in subtropical Australia[J].Grass and Forage Science,2002,57:351-359.
[87]Cakmak I,Hengeler C,Marschner H.Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus,potassium and magnesium defici-ency[J].Journal of Experimental Botany,1994,45:1245-1250.
[88]王有年,杜方,于同泉,等.水分胁迫对桃叶片及其相关酶活性的影响[J].北京农学院学报,2001,16(4):11-16.
[89]Baysdorfer C,Bassham J A.Photosynthate supply and utilization in alfalfa.I.A developmental shift from a source to a sink limitation of photosynthesis[J].Ptant Physiology,1985,77:313-317.
[90]Cave G,Tolley L C,Strain B R.Effect of carbon dioxide enrichment on chlorophyll content,starch content and starch grain structure inTrifoliumsubtertaneumleaves[J].Physiologia Plantarum,1981,171-174.
[91]Baxter R,Bell S A,Sparks T H,etal.Effects of elevated CO2concentrations on three montane grass species III.Source leaf metabolism and whole plant carbon partitioning[J].Journal of Experimental Botany,1995,46:917-929.
[92]Grant S A,Barthram G T,Torvell L.Components of regrowth in grazed and cutLoliumperenneswards[J].Grass and Forage Science,1981,36:155-168.
[93]王国良,李向林,万里强,等.刈割强度对羊草可溶性碳水化合物含量及根茎构件的影响[J].中国草地学报,2007,29(4):74-80.
[94]戚志强,玉永雄,曾昭海,等.紫花苜蓿建植期四种刈割频次下的产量、品质及再生性研究[J].草业学报,2010,19(1):134-142.
[95]Donaghy D J.Improving the production and persistence of temperate pasture species in subtropical dairy regions of Australia[D].New England:The University of New England,1998.
[96]Fulkerson W J.Effect of redefoliation on the regrowth and water soluble carbohydrate content ofLoliumperenne[J].Australian Journal of Agricultural Research,1994,45:1809-1815.
[97]Alberda T.The influence of reserve substances on dry-matter production after defoliation[A].Proceedings of the Xth International Grassland Congress[C].Helsinki,Finland,1966:140-147.
[98]王静,杨持,韩文权,等.刈割强度对冷蒿可溶性碳水化合物的影响[J].生态学报,2003,23(5):908-913.
[99]Masuko T,Tsumurai S,Fujita N,etal.Effect of adding formit acid,bacterial inoculant or amixture of bacterial inoculant and emzymes on the fermentation quality of wilted grass silage[J].Grassland Science,1999,44(4):347-355.
[100]Gibson S I.Plant sugar-response pathway.Part of a complex regulatory web[J].Plant Physiology,2000,124:1532-1539.