渐近非扩张算子方程的隐式迭代序列收敛性
2011-01-17王玮玮
王玮玮
(河北北方学院理学院,河北 张家口075000)
渐近非扩张算子方程的隐式迭代序列收敛性
王玮玮
(河北北方学院理学院,河北 张家口075000)
隐式迭代法是不动点理论的重要内容,非渐近非扩张算子方程也被广泛使用,通过对渐近非扩张算子方程的隐式迭代法的研究,利用渐近非扩张算子的概念和性质,得到了渐近非扩张算子方程隐式迭代解的收敛性的充分条件,完善了对其收敛性研究的理论.
非线性算子方程;渐近非扩张映射;隐式迭代;收敛性
不动点定理是泛函分析和非线性泛函分析的重要内容之一,其中以Browder的不动点定理最为重要和基础,此外还有学者Williamson,Petryshyn等提出的的不动点定理[1,2],近些年来,不定点理论的隐式迭代法和渐近非扩张算子理论得到了不断的丰富和发展[3-12],由于隐式迭代法的高效性,所以更多的被使用和研究.
1 基本概念
定义1 令K是E的非空闭凸子集,且满足K+K⊂K,x0∈K是任意给定的点,{T1,T2,…,TN}:K→K是N维渐近非扩张映射.令{αn}是 [0,1]中的一个序列,且{un}是K中一个有界序列.那么由
定义的序列{xn}⊂K叫做有限个渐近非扩张映射族{T1,T2,…,TN}的带有误差的隐迭代序列.引理1 令K是E的非空子集,{T1}iN=1:K→K是N 个渐近非扩张映射.那么存在一个序列 {hn}⊂[1,∞),且hn→1,使得
引理2 令 {an},{bn},{cn}是三个非负序列,且满足下面的条件:an+1≤ (1+bn)an+cn,∀n≥n0,这里n0是某个非负整数
(1)极限liman存在;
n→∞
(2)另外,如果存在一个子序列 {ani}⊂ {an},使得ani→0,那么an→0(当n→ ∞).
引理3 令E是一致凸的Banach空间,b,c是两个常数,且0<b<c<1.假设 {tn}是 [b,c]中一个序列,且{xn},{yn}是E的两个序列.则从条件
2 主要结果
定理1 令E是一致凸Banach空间,且满足Opial条件,K是E的非空闭凸子集,且K+K⊂K,{T1,T2,…,TN}∶K→K是N 个渐近非扩张映射,且(的公共不动点集合).令 {un}是K中有界序列,{αn}是 [0,1]中一个序列,且 {hn}是由 (1.5)定义的序列,满足下面的条件:
(iii)存在常数τ1,τ2∈(0,1)使得τ1<1-αn<τ2,∀n≥1.那么由定义1的隐性迭代序列{xn}弱收敛于K 中{T1,T2,…,TN}的一个公共不动点.
[1] Browder FE,Petryshyn WV.The solution by interation of nonlinear functional equations in Banach spaces[J].Bull Amer Math Soc,1966,72:571-575
[2] Petryshyn WV,Williamson TE.Strong and weak convergence of the sequence of successive approximation for quasinonexpansive mappings[J].J Math Anal Appl,1973,43:459-497
[3] Sahu DR,Xu HK,Yao JC.Asymptotically pseudocontractive mappings in the intermediate sense[J].Nonlin Anal,2009,71:3502-3511
[4] Song Y,Chen R,Zhou H.Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces[J].Nonlinear Anal,2007,66:1016-1024
[5] Tada A,Takahashi W.Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem[J].J Optim Theory Appl,2007,133(3):359-370
[6] Yao Y,Liu YC,Chen Q,A general iterative method for any infinite family of nonexpansive mappings[J].Nonlin A-nal,2008,69:1644-1654
[7] Yao Y,Chen R,Yao JC.Strong convergence and certain control conditions for modified Mann iteration[J].Nonlin Anal,2008,68:1687-1693
[8] Kim TH,Xu HK.Convergence of modified Mann’s iteration method for asymptotically strict pseudocontraction[J].Nonlin Anal,2008,68:2828-2836
[9] Binh TQ,Chuong NM.On a fixed point theorem [J].Funct Anal Appl,1996,30:220-221
[10] Binh TQ,Chuong NM.On a fixed point theorem for nonexpansive nonlinear operators[J].Acta Math Vietn,1999,24 (1):1-8
[11] Binh TQ,Chuong NM.Approximation of nonlinear operator equations [J].Funct Anal And Optim,2001,22(7&8):831-844
[12] Chuong NM,Thuan NT.Random fixed point theorems for multivalued nonlienear mappings [J].Rand Oper Stoch Equa,2001,9 (3):235-245
Convergence of Implicit Iteration Sequence for Asymptotically Nonexpansive Operator Equation
WANG Wei-wei
(College of Science,Hebei North University,Zhangjiakou 075000,Hebei,China)
The implicit iteration method is the important content of the fixed point theory,and the asymptotically nonexpansive operator equation has been widely used.From the study of the implicit iteration method of the asymptotically nonexpansive operator equation,and by using the concept and property of the asymptotically nonexpansive mapping,the sufficient condition of the convergence solution for the asymptotically nonexpansive operator equation is obtained and the convergence theory is integrated.
nonlinear operator equations;asymptotically nonexpansive mapping;implicit iteration;the convergence
O 177.91
A
1673-1492 (2011)06-0001-04
来稿日期:2011-08-29
王玮玮(1982-),男,河北张家口人,河北北方学院理学院讲师,硕士.
刘守义 英文编辑:刘彦哲]