APP下载

持久性有机污染物的吸附研究进展

2011-01-04林俊杰

重庆三峡学院学报 2011年3期
关键词:硝基苯蒙脱石沸石

乔 澍 谢 昆 付 川 林俊杰

(重庆三峡学院,重庆万州 404100)

持久性有机污染物(POPs)因其在环境中具有长期残留性、生物累积性、半挥发性和高毒性,引起了环境科学家的普遍关注.[1]POPs在水环境中长期暴露并在生物体脂肪内富集,对生态系统和人体健康具有巨大的危害.但是由于POPs在水体中浓度极低(每升水ng~pg级),通过常规水处理方式很难去除.吸附法是目前被广泛采纳的一种处理方法,所用吸附材料包括活性炭、沸石、黏土矿物和最新出现的碳纳米管等多孔物质.作者下面将就这几种常用材料的应用情况分别进行介绍.

1 活性炭

由于具有发达的孔隙结构和巨大的比表面积,活性炭作为吸附剂被广泛应用于饮用水及污水处理过程中[2].但活性炭对水中有机物的吸附缺乏选择性,容易饱和,需要不断再生,[3]对于目前人们最为关心的低浓度、亲脂性POPs的吸附效果并不理想.曲久辉等[4]研制了三油酸甘油酯活性碳复合吸附剂,对七氯和环氧七氯两种POPs的吸附性能进行考察,并使用颗粒活性炭进行对照实验.实验结果表明,类脂复合吸附剂对亲脂性更强的七氯有更好的吸附选择性,并且对这两种POPs的吸附效果均优于传统活性炭.解立平等[5]利用木类、纸张、塑料等固体有机废弃物热解物为原料,制备中孔活性炭,对二噁英和甲苯有良好的吸附性能.徐浩东等[6]利用三甲基氯硅烷(TMCS)对活性炭进行表面改性,研究了改性活性炭对水中苯胺、硝基苯及苯甲酸等典型有机污染物的吸附性能及特性,通过BET对吸附剂进行表征.结果表明,硅烷化改性后活性炭对水中的苯胺、硝基苯、苯甲酸的吸附容量有明显提高.

2 沸 石

天然沸石是自然界广泛存在的一种硅铝酸盐矿物质,由硅氧(SiO4)四面体和铝氧(AlO4)四面体通过处于顶点的氧原子互相联结而成.这种特殊结构使沸石表面带负电荷,此负电荷被金属阳离子(K+、Na+、Ca+等)平衡.沸石中的这些阳离子可与其他阳离子发生交换,并保持骨架结构不发生变化.另外,沸石特殊的硅(铝)氧四面体结构使其孔隙率高达 50%,比表面积大(400~800m2/g),[7]具有较强的吸附能力,沸石的这些特性为其广泛应用创造了良好的前提条件.但是由于天然沸石表面硅氧结构亲水性强,使得沸石表面通常存在一层水膜,因而不能有效地吸附疏水性的有机污染物,需对其进行改性后才能用于有机物的吸附.改性方法分为外部改性和内部改性两种,内部改性的目的是通过改变内部结构、孔径,使污染物进入孔道内部从而得到去除,此方法多用于小分子污染物的去除.对于有机物的吸附,多采用外部改性的方法完成.目前多采用阳离子表面活性剂(如十六烷基三甲基溴化铵,HDTMA)对沸石的无机阳离子进行置换,从而得到有机沸石.由于有机阳离子的水合作用明显小于无机阳离子,可大大减少沸石表面的水分子量,因而对有机污染物的吸附能力比天然沸石强几十甚至几百倍.目前文献中报道的改性方法和适用吸附的有机污染物类型在表 1中列出.

表1 改性有机沸石和适用有机污染物类型Tab. 1 The modification of organic zeolite and removal of different organic pollutants

3 黏土矿物

由于黏土矿物如蒙脱石、膨润土等来源广泛、价格低廉,并且聚金属阳离子、季铵盐等阳离子可以通过离子交换的方法进入黏土矿物层之间,层间膨胀后形成各种有机或者无机的复合材料,在常温、常压下,改性黏土矿物在环境保护中得到了广泛的应用[16-20].

孙洪良[21]制备了]螯合剂柱撑有机膨润土,用于吸附水中有机物对硝基苯酚( PNP)和重金属离子Cu2+,实验结果表明:螯合剂柱撑有机膨润土对有机污染物的吸附主要表现为有机物在长碳链疏水介质中的分配,其吸附能力和膨润土内有机碳、氮含量一致;对水中重金属离子的吸附机理是 Cu2+和进入膨润土层间的有机螫合剂Am形成了配合物,其吸附能力和所形成配合物的稳定性一致.

吴平宵等[22]分别用无机-有机改性柱撑蒙脱石对模拟废水中的苯酚进行吸附试验,结果表明,用表面活性剂改性的柱撑蒙脱石,能较大幅度地提高对苯酚的吸附能力.经 500℃灼烧后柱撑蒙脱石可再生使用,是一种潜在的吸附环境污染物的物质.顾曼华等[23]采用氯化十六烷基吡啶(CPC)、溴化十六烷基吡啶(CPB)和溴化十六烷基三甲铵(CTMAB)改性蒙脱石,处理水中硝基苯,25℃时吸附容量质量分别为117. 0mg·g- 1和87. 6mg·g- 1,去除率为50%~60%.朱利中等[24]用阳离子表面活性剂改性蒙脱石,制得一系列有机蒙脱石,研究其吸附处理水芳香有机污染物的性能、机理及影响因素,结果表明有机蒙脱石去除水中有机物的能力远高于原土;有机蒙脱石对水中有机物的去除率及饱和吸附容量与改性时所用季铵盐阳离子表面活性剂的种类、碳链长度及浓度有关,还与有机物本身的性质(极性、辛醇- 水分配系数等)及其与有机蒙脱石之间的作用方式有关.

4 碳纳米管

碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,每个管状层由碳六边形构成,与石墨内结构相似,其中碳原子以 sp2杂化为主,混合有部分sp3杂化.按其石墨层数分为单壁碳纳米管和多壁碳纳米管,根据不同的卷曲方式单壁碳纳米管分为扶手椅管、锯齿管和手性管.多壁碳纳米管的层数可以在两层到几十层之间.碳纳米管具有较大的表面积和分子尺寸孔洞,自 1991年[25]被研制并能批量生产后就用作吸附剂在环境保护方面有着广泛的应用,在水体污染物吸附方面的研究已有相关综述报道.[26]

梁华定等[27]研究多壁碳纳米管对水中 2-硝基苯酚和2, 4-二氯苯酚的吸附规律.测定不同温度下两物质的吸附等温线,研究吸附的热力学特性和吸附机理.结果表明,碳纳米管对2-硝基苯酚和2, 4-二氯苯酚具有良好的吸附效果,饱和吸附量分别达到24.54 mg/ g 和30.53 mg/ g.用Freundlich 等温方程拟合碳纳米管对两种化合物的吸附,其线性相关系数均大于0195 ;用Clapeyron-Clausius 方程拟合吸附过程,两种物质的线性相关系数都达0.99.-由于对酚分子π-π共轭作用的强弱不同,碳纳米管对2, 4-二氯苯酚的吸附能力大于2-硝基苯酚.

李文军等[28]研究了碳纳米管作为一种新型吸附剂去除水中亚甲基蓝.考察了溶液pH 值、振荡时间、温度等对亚甲基蓝吸附的影响.溶液pH 对亚甲基蓝吸附影响较大,动力学数据显示吸附在8h达到平衡.通过对吸附数据拟合,发现在温度为298~338K 和浓度为2.5~12.5 mg/mol 的范围内,碳纳米管对亚甲基蓝的吸附等温线均符合Feundlich-L angmuir吸附等温式.

张伟等[29]采用 3种不同直径的多壁碳纳米管(MWNTs)对 1, 2, 3-三氯苯( TCB) 进行吸附实验.结果表明,随MWNTs 直径减小,1, 2, 3-三氯苯吸附量增加.研究结果表明,MWNTs 与1, 2, 3-三氯苯之间的强吸附作用可能是因MWNTs 表面与1, 2, 3-三氯苯中苯环之间形成π电子对而实现的.

5 小 结

水体中持久性有机污染物的吸附材料除了上述材料外,还有纤维素材料[30]、壳聚糖[31]、竹炭[32]、吸附树脂[33]等,在各自的领域中取得了很多突破.但普遍存在的问题是无法自由改变其中孔径大小,从而对多种有机污染物进行选择性吸附,且因为孔中多为极性键,经改性后有少量烷基或其他非极性基团,对有机污染物的吸附作用不强,易饱和,不利于少量POPs的富集.在未来的研究中,将金属有机配位化合物与碳纳米管配合使用,[34]可解决上述问题,可能是未来这类吸附材料的发展趋势.

[1]Jones K C, Voogt P D. Persistent organic pollutants ( POPs) : state of the science[J]. Environ Pollut, 1999, 100 (123), 209-211.

[2]Faria P C C, Ōrafo J J M, PereiraM F R. Adsorp tion of anionic and Cationic dyes on activated carbons with different surface chemistries[J]. Water Res, 2004, 38, 2043-2052.

[3]王占生,刘文军.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999:62.

[4]茹加,刘会娟,曲久辉,等.类脂复合吸附剂去除水中微量七氯和环氧七氯的研究[J].环境科学学报,2006,26(11),1757-1762.

[5]a)解立平,林伟刚,杨学民.城市固体有机废弃物制备中孔活性炭[J].过程工程学报,2002,2(5):465-469. b)解立平,林伟刚,杨学民.废弃物基活性炭吸附挥发性有机污染物特性的研究[J].环境工程学报,2007,1(3):119-122.

[6]徐浩东,田森林,张友波,等.硅烷化活性炭对水中有机污染物的吸附作用[J].武汉理工大学学报,2008,30(1):40-43.

[7]张铨昌.天然沸石离子交换性能及其应用[M].北京:科学出版社,1996:21-26.

[8]Sylvie C, Bouffard J. Sheldon B. Uptake of dehydroabietic acid using organically-tailored zeolites[J].Water Research, 2000, 34(9), 2469-2476.

[9]Zhaohui Li, Todd Burt, Robert S. Sorption of benzene, phenol, and aniline by surfactant-modified zeolite[C].1998 Joint Conference on the Environment, 1998, Mar 31-Apr 1,1998, Albuquerque, NM. 277-281.

[10]Zhaohui Li, Robert S, Bowman. Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading[J].Environ. Sci. Technol. , 1998, 32(15), 2278-2282.

[11]Ghiaci M, Abbaspur A, Kia R, et al. Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41[J].Separation and Purification Technology, 2004, 40, 217-229.

[12]Ersoy B, Celik M S. Uptake of aniline and nitrobenzene from aqueous solution by organo-zeolite[J].Environ- mental Technology, 2004, 25, 341-348.

[13]Jovan Lemic, Divna Kovacevic, Magdalena Tomasevic-Canovic, et al. Removal of atrazine, lindane and diazinone from water by organo-zeolites [J].Water Research, 2006, 40(5), 1079-1085.

[14]Jovanovic V, Dondur V, Damjanovic Lj, et al. Improved materials for environmental application: surfactant-modified zeolites[J]. Materials Science Forum, 2006, 518, 223-228.

[15]Hrissi K, Karapanagioti, David A, et al. Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactantmodified sorbents[J].Water Research, 2005, 39, 699-709.

[16]David Christian Rodrguez - Sarmiento, Jorge Alejo Pinzon-Bello. Adsorption of sodium dodecylbenzene sulfonate on organophilic bentonites[J],Applied Clay Science, 2001,18: 173-181.

[17]刘转年,周安宁,金奇庭.粘土吸附剂在废水处理中的应用[J].环境污染治理技术与设备,2003,4(2):54-58.

[18]刘莺,刘学良,王俊德,等.粘土改性条件的研究I-膨润土的改性[J].环境化学,2002,21(2):167-171.

[19]曾秀琼,刘维屏.无机—有机柱撑膨润土的制备及其在水处理中的应用进展[J].环境污染治理技术与设备,2001(2):9-13.

[20]晁吉福,吴耀国,陈培榕.柱撑黏土吸附剂在芳香类有机污染物处理中的应用[J].现代化工,2010,30(4):31-36.

[21]孙洪良.有机膨润土吸附水中重金属和有机污染物的性能及机理研究[J].化学研究与应用,2007,19(7):745-751.

[22]吴平霄.粘土矿物材料与环境修复[M].北京:化学工业出版社,2004:170-171.

[23]Ma, J F, Zhu, L Z, Simultaneous sorption of phosphate and phenanthrene to inorgano - organo -bentonite from water [J].Journal of HazardousMaterials, 2006,136(3):982-988.

[24]Chen, B L; Zhu, L Z; Zhu, J X, Configurations of the bentonite - sorbed myristylpyridinium cation and their influences on the up take of organic compounds[J].Environmental Science Technology, 2005,39:6093-6100.

[25]Iijima S. Microtubes of Graphitic Carbon[J].Nature,1991,354:56-58.

[26]曹德峰,刘宝春,葛海峰,等.碳纳米管吸附水体污染物的研究进展[J].广东化工,2008,35(6):54-57.

[27]朱仙弟,梁华定,赵松林等,碳纳米管对 2-硝基苯酚和 2,4-二氯苯酚的吸附特性研究[J].安全与环境学报,2008,8(2):40-43.

[28]王环颖,李文军,庄媛,等.碳纳米管吸附去除工业废水中亚甲基蓝的研究[J].光谱实验室,2009,26(6):1664-1668.

[29]张伟,施周,徐舜开等.多壁碳纳米管吸附去除水中1, 2, 3-三氯苯[J].湖南大学学报(自然科学版),2009,36(12):69-73.

[30]姚士芹,施文健,陈肖云,等.季铵型纤维素红外光谱及对持久性有机污染物的吸附特征[J].光谱学与光谱分析,2009,29(9):2370-2374.

[31]宋伟,施文健,钟晓永等,壳聚糖对持久性有机污染物吸附研究[J].功能材料,2007,38(7):1197-1201.

[32]孙新元,吴光前,张齐生.竹炭对微污染水中有机污染物的吸附[J].环境科技,2010,23(1):15-18.

[33]费正皓、邢蓉,刘富强,等.吸附树脂对微污染水中有机污染物的吸附研究[J].离子交换与吸附,2010,26(1):24-32.

[34]Xiang, ZH; Hu, Z; Cao, DP, et al., Metal-Organic Frameworks with Incorporated Carbon Nanotubes: Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping, Angewandte Chemie-International Edition,2011,50(2):491-494.

猜你喜欢

硝基苯蒙脱石沸石
气相色谱法测定2,4-二氟硝基苯及其共存杂质
5种沸石分子筛的吸附脱碳对比实验
蒸馏定铵法测定沸石粉吸氨量
葛根固敛汤联合蒙脱石散治疗小儿腹泻的临床观察
草酸对蒙脱石的作用及机理研究
碳化钨与蒙脱石纳米复合材料的制备与电催化活性
有机高岭土在AEO-9/对硝基苯酚二元污染体系中的吸附研究
多晶沸石膜的研究进展
硝基苯催化加氢Pt-MoS2/C催化剂的制备及使用寿命的研究
聚合羟基铁改性蒙脱石的制备、表征及吸附Se(Ⅵ)的特性