APP下载

双层集装箱车通过隧道气动性能实车试验研究

2010-07-31郭玉华陈治亚周丹

关键词:交会双层压差

郭玉华 ,陈治亚,周丹

(1. 中南大学 交通运输工程学院,湖南 长沙,410075;2. 铁道部 运输局,北京,100844)

列车高速通过隧道及在隧道内交会引起的隧道空气动力问题对列车运行安全性、经济性、旅客舒适性及隧道周围环境均产生严重影响,是高速铁路隧道设计中必须解决的关键技术问题,同时也是既有隧道能否适应列车提速需要必须考虑的重要问题[1-3]。世界高速铁路发达国家均在对隧道空气动力问题进行研究[4-7]。2008年12月本文作者在合武(合肥—武汉)铁路上进行了250 km/h等级实车综合试验,列车过隧道及隧道内交会空气动力学试验是本次试验的重要测试内容之一。合武铁路全长359.361 km,全线共计新建隧道36座,隧道总长为63.822 km,全部为单洞双线隧道,线间距为4.6 m,隧道净空面积为92.09 m2,其中大别山隧道(隧道长 13.256 km)及鹰嘴石隧道(隧道长1.080 km)是测试的重点隧道。合武铁路初期为兼顾货运的客运专线,旅客列车最高运行速度为250 km/h,货物列车最高运行速度为120 km/h[8]。由于双层集装箱车装箱后比普通车辆的高,箱体外形为钝性,通过隧道阻塞比较大。当双层集装箱车过隧道时,隧道内压力波动剧烈,尤其是在隧道内交会时,气动性能恶化,影响行车安全[9-11]。在此,本文作者对双层集装箱平车以不同速度通过隧道及在隧道内交会时,集装箱车体表面的压力变化历程及所受的气动力进行分析和研究。

1 测点布置

本次试验货物列车编组由牵引机车、1 辆试验车、26 辆敞车、2辆 25型客车、1辆双层集装箱车和 1辆棚车组成。为测量双层集装箱平车过隧道时压力波动和及在隧道内交会时的侧向力,本次试验在集装箱箱体及车体上共布置64个动态压力传感器,其中:在集装箱箱体的侧面对称位置各布置8个传感器,在集装箱箱体的上顶面布置8个传感器以测试双层集装箱车的横向力、升力,同时,在集装箱平车迎风侧及背风侧也各布置8个传感器,用于测试空气压差阻力。测点具体布置情况如图1所示。

2 测试方法

实车测试系统的组成及原理如图2所示。该系统由动态压力传感器、多通道放大器、A/D转换器、计算机及相应的分析软件组成。该系统以计算机为中心,在软件支持下集成多种虚拟仪器的功能,能对多点、多种随时间变化的参量(主要是瞬态压力信号)进行动态在线实时测量,并能快速地对信号进行分析处理,有效排除噪声干扰,消除偶然误差,修正系统误差,从而实现测量结果的高准确度和具有对被测信号的高分辨能力。

3 测试结果及分析

3.1 集装箱表面测点压力随时间的变化历程

列车在隧道内运行的空气动力特性与明线运行空气动力特性显著不同。列车高速通过隧道,类似于活塞在气缸内运动,在列车头、尾部进、出隧道瞬间,绕列车运动的气流受到隧道壁面制约形成压缩波、膨胀波,这2种波在隧道内以音速向前传播并在另一端隧道口反射,导致隧道内不同空气压力波相互叠加。当同种类型的波叠加时,压力波幅值增加,而不同类型的波叠加时,压力波幅值减小,使隧道内空气压力发生剧烈变化[12-13]。尤其当2列车在隧道内交会时,交会压力波与隧道内的压力波动叠加,使得隧道内列车交会产生的压力变化幅值远比明线交会时的大。

图1 双层集装箱车测点布置Fig.1 Sensor locations on double container car

图2 实车试验动态压力测试系统Fig.2 Sketch of full-scale train test system

图3所示为货物列车以120 km/h的速度与CRH2高速动车组以250 km/h速度在鹰嘴石隧道交会时,位于集装箱箱体侧面24号测点及其对应的52号测点压力随时间的变化曲线。由于双层集装箱车在装载情况下车体高度很高,阻塞比较大,且箱体外形为钝性,2车辆之间车载集装箱间距较大,列车在隧道中运行时,隧道内压力波动剧烈。由图3可以看出:两测点压力波形基本相似,仅压力幅值有所差异,24号测点和52号测点压力幅值分别为2.984 kPa 和 2.572 kPa。这是由于24号测点位于集装箱列车交会侧,当交会瞬间列车交会压力波叠加与隧道内压力波动相互叠加时,其压力幅值比非交会侧的压力幅值增加16%。

3.2 双层集装箱车所受气动力

利用分块积分方法[14]得到双层集装箱车所受的空气压差阻力、侧向力及升力。根据测点布置位置将车体分成32个区域。然后,将各个区域的压力乘以区域面积即可得到空气对该区域的作用力。将各个区域的空气作用力相加可得到该端面的总作用力,分别计算出交会侧和非交会侧的空气作用力,相减后即可得到该辆双层集装箱车在隧道内交会的侧向力曲线。采用同样的方法,可以得到双层集装箱平车上箱所受的空气压差阻力及升力。

图3 双层集装箱车测点压力变化曲线Fig.3 Relationship between pressure of double container car and time

图4 所示为货物列车以120 km/h的速度与CRH2高速动车组以 250 km/h速度分别在大别山隧道及鹰嘴石隧道内交会时,2车交会瞬间被测集装箱平车所受侧向力随时间变化曲线。从图4可以看出:双层集装箱车在隧道内交会,由于列车在交会瞬间车体侧壁会受到强烈的压力冲击,将引起较大的侧向力。交会过程的侧向力变化曲线变化趋势与列车在明线交会的情况基本相同[15]。

图5所示为货物列车以120 km/h的速度通过鹰嘴石隧道时,单列双层集装箱车所受空气压差阻力随时间变化曲线;图6所示为货物列车以120 km/h的速度与CRH2高速动车组以250 km/h的速度在鹰嘴石隧道内交会时,集装箱平车所受空气压差阻力随时间变化曲线。从图5和图6可以看出:不论单列车过隧道还是2列车在隧道内交会,当双层集装箱车辆进入隧道口时,空气压差阻力均急剧上升,之后又逐渐回落。平均阻力约为明线运行时阻力的1.56倍,对于列车在隧道内交会的情况,由于列车在交会瞬间交会压力波的冲击作用,双层集装箱车所受空气压差阻力也波动剧烈。

图4 隧道内交会时双层集装箱车侧向力随时间变化曲线Fig.4 Relationship between side force on double container car and time when trains pass each other in tunnel

图5 单列双层集装箱车过隧道空气压差阻力随时间变化曲线Fig.5 Relationship between pressure drag on double container car and time when train enters into tunnel

图6 隧道内交会时双层集装箱车空气压差阻力随时间变化曲线Fig.6 Relationship between pressure drag on double container car and time when trains pass each other in tunnel

3.3 侧向力与列车运行速度的关系

国外研究表明:临界空气动力持续作用于车体表面2~5 s才可能造成车体倾覆。据此,此次试验计算列车交会过程中气动力引起的车体2 s平均倾覆系数。

货物列车与动车组在大别山隧道(隧道长 13.256 km)及鹰嘴石隧道(隧道长1.080 km)交会时,双层集装箱车所受侧向力、升力及气动力引起的2 s平均倾覆系数测试结果如表1所示。由表1可以看出:货物列车以120 km/h的速度与CRH2动车组不等速交会,当动车组的速度从180 km/h增至250 km/h时,双层集装箱车所受气动力及气动力引起的2 s平均倾覆系数显著增加,侧向力增加60%左右,升力增加约90%。这说明列车在隧道内交会时,列车所受气动力不仅与列车本身的速度有关,而且与之交会的列车运行速度密切相关;当货物列车以120 km/h的速度和动车组以250 km/h的速度在大别山隧道和鹰嘴石隧道内交会时,双层集装箱车由气动力引起的最大2 s平均倾覆系数分别为0.063和0.067,对车辆运行安全影响较小。

表1 货物列车与动车组交会时双层集装箱车测试结果Table 1 Tested results of double container car as goods train and high speed train passing each other

4 结论

(1)当 2列车在隧道内交会时,交会压力波与隧道内的压力波动叠加,使得隧道内列车交会产生的压力变化幅值远比明线交会时的大,而车体交会侧压力变化幅值比非交会侧的压力变化幅值大16%。

(2)当双层集装箱车辆进入隧道口时,空气压差阻力均急剧上升,之后又逐渐回落。在隧道内运行的平均阻力约为明线运行时阻力的1.56倍,对于列车在隧道内交会的情况,由于列车在交会瞬间交会压力波的冲击作用,双层集装箱车所受空气压差阻力也波动剧烈。

(3)列车在隧道内交会时,列车所受气动力不仅与列车本身的速度有关,而且与其交会的列车运行速度密切相关。

(4)货物列车以120 km/h的速度和动车组以250 km/h的速度在大别山隧道和鹰嘴石隧道内交会时,双层集装箱车由气动力引起的最大2 s平均倾覆系数分别为0.063和0.067,对车辆运行安全影响较小。

[1] 王英学, 高波. 高速列车进出隧道空气动力学研究的新进展[J]. 中国铁道科学, 2003, 24(2): 83-88.WANG Ying-xue, GAO Bo. New development of the aerodynamics of high-speed trains passing in and out tunnels[J].China Railway Science, 2003, 24(2): 83-88.

[2] Aschetz J. 高速列车空气动力学[J]. 力学进展, 2003, 33(3):404-423.Aschetz J. Aerodynamic performance of a typical high-speed train[J]. Advanced in Mechanics, 2003, 33(3): 404-423.

[3] Auvity B, Bellenoue M, Kageyama T. Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry[J]. Experiments in Fluids, 2001, 30(2): 221-228.

[4] Raghu S, Kimb H D, Setoguchi T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(1):469-514.

[5] Howe M S. Pressure transients generated when high-speed trains pass in a tunnel[J]. IMA Journal of Applied Mathematics, 2000,65(3): 315-34.

[6] Bellenoue M, Morinie' re V, Kageyama T. Experimental 3-D simulation of the compression wave, due to train-tunnel entry[J].Journal of Fluids and Structures, 2002, 16(5): 581-595.

[7] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9.TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering,2006, 6(1): 1-9.

[8] 铁道部工程设计鉴定中心. 高速铁路隧道[M]. 北京: 中国铁道出版社, 2006: 20-35.Engineering Design Department of Ministry of Railways.High-speed railway tunnels[M]. Beijing: China Railway Press,2006: 20-35.

[9] Baron A, Mossi M, Sibilla S. The alleviation of the aerodynamic drag and wave effects of high-speed trains in very long tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(5): 65-401.

[10] 刘堂红, 田红旗. 不同外形列车过隧道实车试验的比较分析[J]. 中国铁道科学, 2008, 29(1): 51-55.LIU Tang-hong, TIAN Hong-qi. Comparison analysis of the full-scale train tests for trains with different shapes passing tunnel[J]. China Railway Sicence, 2008, 29(1): 51-55.

[11] 田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007:268-303.TIAN Hong-qi. Train aerodynamics[M]. Beijing: China Railway Press, 2007: 268-303.

[12] Mashimo S, Iwamoto K, Aoki T. Characteristics of compression wave generated by a high-speed train entering tunnel[J].Engineering Sciences Reports, 1997, 18(4): 297-302.

[13] 何德昭, 徐鹤寿, 王厚雄. 列车通过隧道诱发的气动变化规律的试验研究[J]. 中国铁道科学, 1997, 18(4): 42-43.HE De-zhao, XU He-shou, WANG Hou-xiong. Research on the variation regularities of aerodynamic events in tunnels arising from passing trains[J]. Engineering Sciences Reports, 1997,18(4): 42-43.

[14] 熊小慧, 梁习锋. 双层集装箱列车过隧道空气压差阻力实验研究[J]. 实验流体力学, 2006, 20(3): 18-22.XIONG Xiao-hui, LIANG Xi-feng. Experimental research on pressure drag of the double container car passing through tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006,20(3): 18-22.

[15] 田红旗, 梁习锋. 准高速列车交会空气压力波试验研究[J].铁道学报, 1998, 21(4): 37-42.TIAN Hong-qi, LIANG Xi-feng. Test research on crossing air pressure pulse of quasi-high-speed train[J]. Journal of the China Railway Society, 1998, 21(4): 37-42.

猜你喜欢

交会双层压差
双层最值问题的解法探秘
燃气过滤器滤网流阻特性及压差评价
荣威混动e550高压电池组电芯压差过大
墨尔本Fitzroy双层住宅
2019年,水交会来了!
“双层巴士”开动啦
立方体星交会对接和空间飞行演示
次级通道在线辨识的双层隔振系统振动主动控制
冻融处理对甘薯变温压差膨化干燥动力学的影响
一切以交易的名义——首届黑马创交会揭秘