APP下载

微藻在海水鱼类苗种培育过程中的作用

2010-04-10于道德宁璇璇郑永允官曙光任贵如王娟高翔刘梦侠李绍彬关健刘洪军

海洋通报 2010年2期
关键词:仔鱼轮虫微藻

于道德,宁璇璇,郑永允,官曙光,任贵如,王娟,高翔,刘梦侠,李绍彬,关健,刘洪军

(1. 山东省海水养殖研究所,山东 青岛 266071;2. 国家海洋局烟台海洋环境监测中心站,山东 烟台 264006;3. 滨州市海洋与渔业局,山东 滨州 256600)

微藻在海水鱼类苗种培育过程中的作用

于道德1,宁璇璇2,郑永允1,官曙光1,任贵如3,王娟1,高翔1,刘梦侠1,李绍彬1,关健1,刘洪军1

(1. 山东省海水养殖研究所,山东 青岛 266071;2. 国家海洋局烟台海洋环境监测中心站,山东 烟台 264006;3. 滨州市海洋与渔业局,山东 滨州 256600)

主要从营养、促摄食以及益生作用三方面来综述微藻在海水鱼类苗种培养过程中的作用。在海水鱼类苗种培育过程中,微藻(microalgae)已得到广泛应用。由于绿藻的应用常使养殖水体呈现绿色,被形象地称为绿水养殖(green water culture)模式。微藻的作用首先是作为营养源直接供给仔鱼营养,或通过轮虫(Brachionus plicatilis)等生物饵料的富集或载体作用间接为仔鱼传递营养物质;微藻还可以通过提供微量营养元素在仔鱼摄食行为的建立、调节以及消化生理的刺激等方面发挥作用。除营养作用外,添加微藻还具有改善水质、增加水体混浊度和光对比度的作用,从而提高食饵的背景反差,增加海水仔鱼的摄食率。此外,微藻也可以调节养殖水体以及仔鱼肠道的微生态系统,维持水体及仔鱼肠道的菌群平衡,通过发挥益生作用减少病原菌的暴发。

微藻;营养;摄食;益生作用;微生态系统

早在1970年,Jones就证实了小球藻 (Chlorella spp.) 能提高鱼苗的存活率、生长率和品质[1],之后绿水养殖模式被广泛地应用于各种海水鱼类的苗种培育过程[2]。但使用的微藻种类较少[3,4],主要包括小球藻[5]、扁藻 (Tetraselmis spp. )[6]、微绿球藻 (Nannochloropsis spp. )[7,8]、球等鞭金藻 (Isochrysis galbana)[9]等。在海水鱼类苗种繁育过程中,也存在多种微藻混合使用的现象,如球等鞭金藻和扁藻在大菱鲆育苗过程中得到了广泛应用[10],而在银鲳 (Pampus argenteus) 苗种培养过程中则经常联合使用小球藻、等鞭金藻和微绿球藻[11]。

微藻能够通过调节水体中光线的吸收和散射方式,增大食饵的背景反差,从而对仔鱼初次摄食行为的建立具有关键作用。另外,微藻本身所含的营养成分或分泌的微量营养元素,如游离氨基酸类、核酸类、糖类等,不仅可作为仔鱼摄食的高效诱导物,而且能刺激特定消化酶的分泌及活性增强[12]。最近研究发现,某些微藻分泌的活性物质不仅能够发挥抗菌活性[13,14]、调节有益菌群的生长、抑制机会病原菌在养殖水体中的爆发,而且在维持养殖水体和活饵料以及仔鱼肠道的微生态系统平衡方面发挥着重要的益生作用[14]。本文从微藻在海水鱼类苗种培育过程中的营养、促摄食以及益生作用三个方面分别展开论述。

1 微藻的营养组成及影响因素

微藻的营养价值主要取决于其外观形态(如形状和大小,对于活饵料来说影响其适口性)、自身营养成分的种类、含量和比例以及胞外分泌物等特性[4]。总的来说,微藻的营养组分主要包括糖类、蛋白质、脂肪和维生素[15]等。虽然不同微藻的营养组成差异较大,如绿藻类含糖量较高,而硅藻则具有较高的脂含量[3,16],但蛋白质在不同微藻中的含量都较高,糖类也很少成为影响其营养价值的成分。微藻的营养价值主要取决于特定种类的脂类,如高度不饱和脂肪酸 (high unsaturated fatty acids, HUFAs),以及维生素等[3],其最易成为仔鱼发育的营养限制因子。另外,微藻的胞外分泌物(如促生长物质)对于仔鱼的生长也具有重要作用[4]。

除遗传因素和种类差别外,营养因素、培养条件(充气情况、温度、盐度、光照强度及周期等)以及收获时期(指数生长期或静息期)等外界环境因子均可显著影响藻类的营养组成[3,17,18]。如假微型海链藻(Thalassiosira pseudonana) 在12L∶12D的条件下培养,其EPA含量比连续光照条件下培养高出25%[19];在充气培养的条件下,硅藻类含有更高含量的蛋白质[3]。

微藻所含的脂类,尤其是HUFA,对于多数鱼类的早期发育具有非常重要的作用[20,21],如DHA与鱼类的视觉和中枢神经系统的正常发育密切相关[22]。在鱼类的早期发育过程中,由于消化功能尚不完善不可能从头合成脂类,在内源营养(卵黄物质)耗尽后,仔鱼的营养供应完全依赖于食物来源[23]。尤其是海水鱼类,由于缺乏特定的酶类,即使在变态后对于HUFA的合成能力也很有限[24]。而微藻作为HUFA的主要来源,无论通过直接或间接的方式,在传递此类营养素的过程中都起到非常关键的作用,尤其体现在活饵料的强化过程中[25]。

2 微藻的营养作用

微藻的直接营养作用:大量实验表明,鱼类在仔鱼阶段能够依靠鳃部主动滤食微藻[26],并作为食物进行消化吸收[5,27-31],例如,初孵化的大菱鲆仔鱼就能够对球等鞭金藻 (Isochrysis galbana) 主动吸收[9]。通过放射标记研究发现,大西洋庸鲽对扁藻 (Tetraselmis sp.) 的摄食存在规律性变化,尤其是在开口前,即摄食浮游动物(轮虫及卤虫)前达到峰值,可滤食占仔鱼生物量1.3% ~ 4.7%的微藻,并同化1% ~ 5%的生物量[32]。虽然对微藻的摄食量及同化率远低于对浮游动物等较大型饵料,而且不同鱼类对于藻类的摄食量和同化率也存在差异,但鱼类早期发育阶段主动滤食微藻的行为对于仔鱼的生长和发育,尤其是消化系统的完善,都具有非常重要的营养作用。

微藻的间接营养作用:就是通过活饵料(轮虫和卤虫等)的载体作用,将营养物质传递给仔鱼,而且微藻本身也可作为载体生物来富集核黄素 (Riboflavin) 等营养成分[33]。更为重要的是,微藻可维持水体内活饵料营养组分的稳定,尤其是蛋白质和脂类(DHA和 EPA)的含量及比例。例如,轮虫在食物限制或饥饿的条件下将迅速失去其营养价值,但通过强化培养能够迅速改变其自身的营养组分[34]。从营养学角度来看,食物营养物质的组成与摄食者对营养含量的要求越接近,其营养价值越高。采用酵母和微绿球藻共同强化的轮虫投喂仔鱼,其生长和存活率要好于单独使用微藻的效果,说明微绿球藻所缺乏的某些必需营养素可由酵母弥补[35]。轮虫摄食不同种类、品系的微藻,甚至是不同培养条件下的同一微藻,也明显地影响着轮虫的生长、繁殖及其营养价值[36]。

因此,根据不同鱼类早期阶段对营养组分的需求量及其比例(尤其是 HUFA),搭配以不同种类的藻类,无论是通过仔鱼的直接摄食还是通过活饵料的载体作用,都将对仔鱼的早期生长、发育和品质(包括色素沉积、体型等)等方面产生更好的效果。

3 微藻对仔鱼摄食的影响

在鱼类早期发育阶段,大部分器官和组织尚处于未分化或未成熟阶段,因此,更重要的是保证其生长发育过程的顺利进行,这除了需要合适的外界环境,自身的摄食能力起到了最为关键的作用。微藻对鱼类仔稚鱼摄食行为及摄食率的影响,不仅与微藻种类相关,而且与苗种的差别及早期发育阶段密切相关[37]。

由于大部分鱼类在仔稚鱼阶段主要依赖于视觉进行摄食,没有光照就不能形成视觉反应[38]。仔鱼的摄食强度与光强度之间通常呈S型相关:随着光照从完全黑暗逐渐增强,直到抵达摄食临界光强度后,摄食强度才开始增加,然后在达到一定光强后,摄食强度不再增加[39]。而微藻能够影响育苗水体中光线的吸收和散射方式,调节水体透明度,增大食饵的背景反差,从而可提高仔鱼摄食能力[2,40]。

除视觉刺激外,化学刺激对鱼类的摄食也具有一定的促进作用,尤其是对于仔鱼初次摄食行为的建立至关重要[41],而且化学刺激与视觉刺激间存在协同效应[42]。化学刺激物的本质就是饵料本身含有的促摄食成分[43],包括游离氨基酸类[44]、甜菜碱、核苷酸类[45]、糖类等。研究表明,微藻本身富含多种促摄食物质,这些物质不仅可提高仔鱼对活饵料的摄食率,而且对于仔鱼食性转换,尤其是对微囊饲料的摄食转化都具有很好的促进作用[46]。

微藻含有的其他活性成分,如聚酰胺、精胺和氨基酸等,也可通过不同的方式调节仔鱼的消化生理,如促进仔鱼消化酶分泌量的增加[12,47],并可提高消化酶的活性[46]。其中,聚酰胺通过刺激缩胆素(cholecystokinin,CCK)的产生来调节胰腺消化酶的释放,而精胺可提高肠上皮膜酶(氨基肽酶及碱性磷酸酶)的活性,进而促进仔鱼肠道上皮的成熟[48]。

如上所述,微藻能够从视觉、嗅觉以及消化生理等多方面来调节仔鱼的摄食行为,从而有助于仔鱼顺利通过内外营养转换、后期活饵料的转换或配合饵料的转换。

4 微藻的益生 (probiotics) 作用

虽然抗生素的应用在水产生物疾病控制方面发挥了重要作用,但是近年来耐药性细菌的泛滥已给水产行业造成了巨大的经济损失。鉴于抗生素导致细菌产生耐药性的威胁以及食品安全等问题,寻求抗生素替代物已经成为水产生物病害控制的当务之急。其中,益生菌目前已成为替代抗生素的主要手段之一,在水产养殖上得到了广泛的应用[49-51]。

从作用机制上来看,微藻与益生菌都是通过调节水体的微生态平衡来发挥益生作用。因此,有学者也将微藻归为益生菌的范畴[52]。研究发现,仔鱼肠道的致病菌以及来源于轮虫的有害菌群是导致鱼类早期高死亡率的主要诱因[53]。微藻可通过调节水体、仔鱼表皮及肠道的微生态群落而发挥益生作用[16,54,55],还可与益生菌协同发挥作用[56],从而提高仔鱼的成活率。例如,微绿球藻 (Nannochloropsis sp.) 培养水体的细菌类群主要包括 α-变形菌 (Proteobacteria) 和嗜纤维菌属-黄杆菌属类群 (Cytophaga–Flavobacterium, CF)的细菌,这种多菌群平衡的生态系统对稳定养殖水质具有重要意义[57]。而在无微绿球藻的情况下,γ-变形菌则成为仔鱼养殖水体中的优势菌群 (70%)[58],这其中包括溶藻弧菌 (Vibrio alginolyticus)[59]、美人鱼弧菌 (Vibrio damsela)[60]等多种水产动物致病菌。

与营养作用类似,微藻的益生作用也包括直接和间接两种方式。微藻不仅可以直接调节水体的菌群平衡和仔鱼肠道的微生态群落,同时也可以调节轮虫和卤虫等生物饵料肠道的微生态群落。例如,在轮虫培养过程中易产生的弧菌类病原菌[61],在没有微藻的水体中会造成弧菌的大量繁殖,疾病暴发;如果采用微藻与轮虫共培养(直接进入养殖水体或短期强化),则可改变轮虫肠道菌群的结构[62],从而可减少因生物饵料引入的病原菌。

从微藻中分离的活性物质是其发挥抗菌或益生作用的根本所在。虽然大部分成分还没有鉴定清楚,但至少包括脂肪酸、有机酸、酚类、萜类、多糖和多肽等[63]。与抗生素所不同的是,微藻所含的抗菌成分多为混合物质,如20世纪50年代,Pratt等从小球藻中分离得到的小球藻素 (chlorella),即为脂肪酸的混合物,能够抑制几种革兰氏阳性菌和革兰氏阴性菌的活性[64]。类似的报道还有从中肋骨条藻 (Skeletonema costatum) 中获得的活性物质,能够抑制多种弧菌的增殖[14],从紫球藻 (Porphyridium cruentum) 分离的硫酸酯多糖具有抗病毒活性[65]等。此外,微藻自身合成和分泌的活性物质还能够促进优势菌群生长,如硅藻分泌的多糖物质 (dimethyl sulphoniopropionate, DMSP) 能够促进CF类群[66]和α-变形菌[67]的生长和繁殖,使其成为水体中的优势种类,从而抑制病原菌的繁殖。

5 结语与展望

综上所述,微藻对鱼类仔鱼早期的生长发育等多方面都具有非常重要的作用,而且这些作用具有相互协同性。目前已有几百种商品化供应的微藻,但在水产养殖业中应用的种类尚不足 20种,在鱼类中广泛使用的则更少。因此,迫切需要开发优质微藻并探讨其在鱼类早期发育中的确切作用,从而更好地服务于海水鱼类养殖业,促进水产养殖的健康发展。

[1] Jones A C. Chlorella for rearing of marine fish larvae [J]. FAO Fish Culture Bulletin, 1970, 2 (4): 3.

[2] Naas K, Naess T, Harboe T. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water [J]. Aquaculture, 1992, 105:143-156.

[3] Brown M R, Jeffrey S W, Volkman J K, et al. Nutritional properties of microalgae for mariculture [J]. Aquaculture, 1997, 151: 315-331.

[4] Brown M R. In Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola L. E. Cruz-Suárez, D.Ricque-Marie, M. Tapia-Salazar, M. G. Gaxiola-Cortés, N. Simoes, Eds. (Cancún, Quintana Roo, México, 2002).

[5] Moffatt N M. Survival and growth of Northern anchovy larvae on low zooplankton densities as affected by the presence of a Chlorella bloom [J].Rapports et Proces-Verbaux des Reunions (Conseil Permanent International pour l'Exploration de la Mer), 1981, 178: 475-480.

[6] Gulbrandsen J, Lein I, Holmefjord I. Effects of light administration and algae on first feeding of Atlantic halibut larvae, Hippoglossus hippoglossus (L.)[J]. Aquaculture Research, 1996, 27 (2): 101-106.

[7] Hernández-Cruz C M, Salhi M, Fernández-Palacios H, et al. Improvements in the culture of Sparus aurata L. larvae in relation to the use of antibiotics,phytoplankton and rearing system [J]. Aquaculture, 1994, 124 (1-4): 269-274.

[8] Lee C S. Marine finfish hatchery technology in the USA – status and future [J]. Hydrobiologia, 1997, 358 (1): 45-54.

[9] Tytler P, Ireland J, Murray L. A study of the assimilation of fluorescent pigments of microalgae Isochrysis galbana by the early larval stages of turbot and herring [J]. Journal of Fish Biology, 1997, 50 (5): 999-1009.

[10] Reitan K I, Rainuzzo J R, Øie G, et al. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae [J]. Aquaculture,1993, 118 (3-4): 257-275.

[11] Al-Abdul-Elah K M, Almatar S, Abu-Rezq T, et al. Development of hatchery technology for the silver pomfret Pampus argenteus (Euphrasen): effect of microalgal species on larval survival [J]. Aquaculture Research, 2001, 32 (10): 849-860.

[12] Cahu C L, Zambonino Infante J L, Peres A, et al. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes [J].Aquaculture, 1998, 161 (1-4): 479-489.

[13] Austin B, Baudet E, Stobie M. Inhibition of bacterial fish pathogens by Tetraselmis suecica [J]. Journal of Fish Diseases, 1992, 15 (1): 55-61.

[14] Naviner M, Berge J P, Durand P, et al. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens [J]. Aquaculture,1999, 174 (1-2): 15-24.

[15] Brown M R, Mular M, Miller I, et al. The vitamin content of microalgae used in aquaculture [J]. Journal of Applied Phycology, 1999, 11: 247-255.

[16] Reitan K I, Rainuzzo J R, Øie G, et al. A review of the nutritional effects of algae in marine fish larvae. [J] Aquaculture, 1997, 155 (1-4): 207-221.

[17] Renaud S M, Thinh L V, Parry D L. The gross composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture [J]. Aquaculture, 1999, 170: 147-159.

[18] Harrison P, Thompson P, Calderwood G. Effects of nutrient and light limitation on the biochemical composition of phytoplankton [J]. Journal of Applied Phycology, 1990, 2 (1): 45-56.

[19] Brown M R, Dunstan G A, Norwood S J, et al. Effects of harvest stage and light on the chemical composition of the diatom Thalassiosi pseudonana [J].Journal of Phycology, 1996, 32 (1): 64-73.

[20] Sargent J R, McEvoy L A, Bell J G. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds [J]. Aquaculture,1997, 155: 117-127.

[21] Sargent J R, Tocher D R, Bell J G. In Fish Nutrition, 3rd edition J. E. Halver, R. W. Hardy, Eds. (Academic Press, San Diego, 2002, 181-257.

[22] Bell M V. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.) [J]. Lipids, 1995,30: 443-449.

[23] Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae [J]. Aquaculture, 2003, 227 (1-4): 211-220.

[24] Sargent J R. Lipid nutrition of marine fish during early development: current status and future directions [J]. Aquaculture, 1999, 179: 217-229.

[25] Han K, Geurden I, Sorgeloos P. Enrichment strategies for Artemia using emulsions providing different levels of n-3 highly unsaturated fatty acids [J].Aquaculture, 2000, 183: 335-347.

[26] Reitan K I, Natvik C M, Vadstein O. Drinking rate, uptake of bacteria and microalgae in turbot larvae [J]. Journal of Fish Biology, 1998, 53 (6): 1 145-1 154.

[27] Last J M. The food of larval turbot Scophthalmus maximus L. from the west central North Sea [J]. ICES Journal of Marine Science, 1979, 38 (3):308-313.

[28] Stoecker D K, Govoni J J. Food selection by young larval gulf menhaden (Brevoortia patronus) [J]. Marine Biology, 1984, 80 (3): 299-306.

[29] Lein I, Holmefjord I. Age at first feeding of Atlantic halibut larvae [J]. Aquaculture, 1992, 105: 157-164.

[30] Van der Meeren T. Algae as first food for cod larvae, Gadus morhua L.: filter feeding or ingestion by accident [J]. Journal of Fish Biology, 1991, 39 (2):225-237.

[31] Vásquez-Yeomans L, Carrillo-Barrios-Gómez E, Sosa-Cordero E. The effect of the nanoflagellateTetraselmis suecica on the growth and survival of grunion,Leuresthes tenuis, larvae [J]. Environmental Biology of Fishes, 1990, 29 (3): 193-200.

[32] Reitan K I, Bolla S, Olsen Y. A study of the mechanism of algal uptake in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus) [J]. Journal of Fish Biology, 1994, 44 (2): 303-310.

[33] Souto M, Saavedra M, Pousão-Ferreirab P, et al. Riboflavin enrichment throughout the food chain from the marine microalga Tetraselmis suecica to the rotifer Brachionus plicatilis and to White Sea Bream (Diplodus sargus) and Gilthead Sea bream (Sparus aurata) larvae [J]. Aquaculture, 2008, 283 (1-4):128-133.

[34] Makridis P, Olsen Y. Protein depletion of the rotifer Brachionus plicatilis during starvation [J]. Aquaculture, 1999, 174 (3-4): 343-353.

[35] Tamaru C S, Murashige R, Lee C-S, et al. Rotifers fed various diets of baker's yeast and/or Nannochloropsis oculata and their effect on the growth and survival of striped mullet (Mugil cephalus) and milkfish (Chanos chanos) larvae [J]. Aquaculture, 1993, 110 (3-4): 361-372.

[36] Sayegh F A Q, Radi N, Montagnes D J S. Do strain differences in microalgae alter their relative quality as a food for the rotifer Brachionus plicatilis [J].Aquaculture, 2007, 273 (4): 665-678.

[37] Rocha R J, Ribeiro L, Costa R, et al. Does the presence of microalgae influence fish larvae prey capture [J]. Aquaculture Research, 2008, 39 (4):362-369.

[38] Kawamura G, Ishida K. Changes in sense organ morphology and behavior with growth in flounder, Paralichthys olivaceus [J]. Bulletin of the Japanese Society of Scientific Fishery, 1985, 51: 155-165.

[39] Blaxter J H S. In Fish Physiology W. S. Hoar, D. J. Randall, Eds. (Academic, New York, 1988), vol. XI A, 44-47.

[40] Naas K, Huse I, Iglesias J. Illumination in first feeding tanks for marine fish larvae. [J] Aquacultural Engineering, 1996, 15: 291-300.

[41] Knutsen J A. Feeding behaviour of North Sea turbot (Scophthalmus maximus) and Dover sole (Solea solea) larvae elicited by chemical stimuli [J].Marine Biology, 1992, 113 (4): 543-548.

[42] Koven W, Kolkovski S, Hadas E, et al. Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review [J]. Aquaculture,2001, 194 (1-2): 107-121.

[43] Kasumyan A O, Døving K B. Taste preferences in fishes [J]. Fish and Fisheries, 2003, 4 (4): 289-347.

[44] Mearns K J. Sensitivity of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) fry to amino acids at the start of exogenous feeding [J].Aquaculture, 1986, 55 (3): 191-200.

[45] Li P, Gatlin Iii D M. Nucleotide nutrition in fish: Current knowledge and future applications [J]. Aquaculture, 2006, 251 (2-4): 141-152.

[46] Lazo J P, Dinis M T, Holt G J, et al. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus) [J]. Aquaculture, 2000, 188 (3-4): 339-351.

[47] Hjelmeland K, Pedersen B H, Nilssen E M. Trypsin content in intestines of herring larvae, Clupea harengus, ingesting inert polystyrene spheres or live crustacea prey [J]. Marine Biology, 1988, 98 (3): 331-335.

[48] Péres A, Cahu C L, Zambonino Infante J L. Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae [J].Fish Physiology and Biochemistry, 1997, 16 (6): 479-485.

[49] Kesarcodi-Watson A, Kaspar H, Lategan M J, et al. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes[J]. Aquaculture, 2008, 274 (1): 1-14.

[50] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic Bacteria as Biological Control Agents in Aquaculture [J]. Microbiology and Molecular Biology Reviews, 2000, 64 (4): 655-671.

[51] Wang Y-B, Li J-R, Lin J. Probiotics in aquaculture: Challenges and outlook [J]. Aquaculture, 2008, 281 (1-4): 1-4.

[52] Das S, Ward L, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture [J]. Applied Microbiology and Biotechnology, 2008, 81(3): 419-429.

[53] Planas M, Cunha I. Larviculture of marine fish: problems and perspectives [J]. Aquaculture, 1999, 177: 171-190.

[54] Nicolas J L, Robic E, Ansquer D. Bacterial flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae: Influence of bacteria on larval survival [J]. Aquaculture, 1989, 83 (3-4): 237-248.

[55] Skjermo J, Vadstein O, paper presented at the Proceedings of the First International Conference on Fish Farming Technology, Trondheim, Norway 1993.

[56] Skjermo J, Salvesen I, Øie G, et al. Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae [J]. Aquaculture International, 1997, 5 (1): 13-28.

[57] Nakase G, Eguchi M. Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production [J]. Fisheries Science, 2007, 73(3): 543-549.

[58] Nakase G. Association between bacterial community structures and mortality of fish larvae in intensive rearing systems [J]. Fisheries Science, 2007, 73(4): 784-791.

[59] Balebona M C. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.) [J]. Applied Microbiology and Biotechnology,1998, 64 (11): 4269-4275.

[60] Pedersen K, Dalsgaard I, Larsen J L. Vibrio damsela associated with diseased fish in Denmark [J]. Applied Microbiology and Biotechnology, 1997, 63(9): 3711-3715.

[61] Verdonck L. Vibrios associated with routine productions of Brachionus plicatilis [J]. Aquaculture, 1997, 149: 203-214.

[62] Olsen A I. Effects of short term feeding of microalgae on the bacterial flora associated with juvenile Artemia franciscana [J]. Aquaculture, 2000, 190(1-2): 11-25.

[63] Borowitzka M A. Microalgae as sources of pharmaceuticals and other biologically active compounds [J]. Journal of Applied Phycology, 1995, 7 (1):3-15.

[64] Pratt R. Studies on Chlorella Vulgaris: XI. Relation between surface tension and accumulation of Chlorellin [J]. American Journal of Botany, 1948, 35:634-637.

[65] Minkova K, Michailov Y, Toncheva-Panova T, et al. Antiviral activity of Porphyridium cruentum polysaccharide [J]. Pharmazie, 1996, 51 (3): 194.

[66] Nicolas J L, Corre S, Cochard J C. Bacterial population association with phytoplankton cultured in a bivalve hatchery [J]. Microbial Ecology, 2004, 48(3): 400-413.

[67] Zubkov M V. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea [J]. Environmental Microbiology, 2001, 3: 304-311.

The functions of microalgae in marine fish larviculture

YU Dao-de1, NING Xuan-xuan2, ZHEN Yong-yun1, GUAN Shu-guang1, REN Gui-ru3, WANG Juan1,GAO Xiang1, LIU Meng-xia1, LI Shao-bin1, GUAN Jian1, LIU Hong-jun1

(1. Mariculture Institute of Shandong Province, Shangdong Qingdao 266071, China;2. Yantai Oceanic Environmental Monitoring Central Station of State Oceanic Administration, Yantai 264006, China;3. Marine and Fishery Bureau of Binzhou, Binzhou 256600, China)

Microalgae has been widely used in marine fish larvicluture for many years. Generally, the cultural water is green color for the predominant usage of chlorophytes, as a result, the technique is called green water culture.Microalgae is believed to improve the nutritional conditions of the fish larval, either directly by active feeding or indirectly through improving the trophic value of live feed, such as rotifers and Artemia spp. Besides its nutritional value, microalgae seem to be beneficial in the feeding behavior and modulating the digestive physiology of fish larvae through: 1. increase of turbidity, light scattering and attenuation, and visual contrast enhancement; 2. chemical and digestive stimulants resulting in more digestive enzymes and activity. More recently, with the emergence of the concept of “probiotics”, microalgae acted as “probiotics-alga” during the finfish larval culture: including its antibacterial properties, and a modulating function in the bacterial flora balance of culture water as well as the skin and gut of the larval fish and live feed.

microalgae; nutrition; feeding; probiotics; microecology system

S962; S963.21+3

A

1001-6932(2010)02-0235-06

2009-04-02;

2009-07-20

海洋公益性行业科研专项经费项目(200805069);山东省良种工程(工厂化适养品种选育-优质抗病速生鱼类良种选育)

于道德(1978-),男,山东青岛人,博士,主要从事海洋生物学研究。电子邮箱:wensentte@163.com

刘洪军,研究员,理学博士,电子邮箱:Hongjunl@126.com

猜你喜欢

仔鱼轮虫微藻
浅析影响仔鱼开口摄食的因素
饥饿对似鱼句早期仔鱼发育、摄食及生长的影响
代食品运动中微藻的科研与生产
温度对不同种类臂尾轮虫生长与繁殖的影响
“逆天神偷”蛭形轮虫
"逆天神偷"蛭形轮虫
“逆天神偷”蛭形轮虫
絮凝法采收生物燃料微藻的研究进展
斑鳜仔鱼饥饿试验及不可逆点的确定
微藻对低温响应的Ca2+信号传导途径研究进展