APP下载

数学思想和数学方法渗透到创新思维的培养

2009-06-09袁国民

中国校外教育(中旬) 2009年3期
关键词:数学方法数学思想创新思维

袁国民

(河北省卢龙县陈官屯乡中学,河北 卢龙)

[摘 要]:数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。提高学生的数学素质、指导学生学习数学方法,毋庸置疑,指导学生紧紧抓住掌握数学思想方法是这一数学链条中的最重要一环。

[关键词]:数学思想 数学方法 创新思维

数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。提高学生的数学素质、指导学生学习数学方法,毋庸置疑,指导学生紧紧抓住掌握数学思想方法是这一数学链条中的最重要的一环。许多数学家和教育家历来强调对中学生的数学思想教育,其目的就是要提高学生的数学创新思维能力和数学素养。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要。九年义务教育全日制初级中学数学《新课程标准》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

新课程把数学思想、方法作为基础知识的重要组成部分,在数学《新课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。

一、了解《数学新课标》要求,把握教学方法

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。

数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

1.新课标要求渗透“层次”教学。《数学新课标》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在《数学新课标》中并没有明确提出来,比如,化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。

2.从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。

因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,使数学思想与方法得到交融的有效方法。在数学教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、遵循认识规律,把握教学原则,培养创新思维

创造性思维是自觉的能动思维,是一种非常复杂的心理和智能活动,其主要特征是新颖性、独创性、突破性、真理性和价值性。实施创造性思维能力的培养,需要有创见的设想和理智取舍活动的过程。在分析一般创造性思维过程时,一种被普遍认同的理论是由约瑟夫.沃拉斯于1926年提出来的。他认为创造性思维过程包括4个连续的阶段:(1)准备阶段;(2)酝酿阶段;(3)明朗阶段;(4)验证阶段。

良好的思维习惯主要体现在是否敢于思维和独立思维。这就要求教师为学生的思维提供空间和时间,注重思维诱导,把知识作为过程而不是结果教给学生,为学生的思维创造良好的思维环境。

1.注重设计提问的问题,培养学生独立思维的习惯。著名的数学教育家波利亚认为:“高质量的提问,使学生不断产生‘是什么、‘为什么的定向反射。”高质量的提问在课堂教学中不仅可以长时间的维持学生的有意注意,而且还会很好地培养学生的思维习惯。

2.充分发挥学生的主体作用,培养学生独立思维习惯。例如,在讲解平行四边形的判定时,可以如下进行:(1)从学生已有的知识入手,要求学生说出平行四边形的性质,并利用学生已有的研究几何图形的经验得到课题,把学法指导有机地贯穿在教学过程中,引导学生从已有的知识和经验出发,通过交流讨论得出平行四边形的判定命题,最后得出“一组对边平行且相等的四边形是平行四边形”的判定方法。(2)在证明命题时,首先引导学生对四个命题的证明顺序进行研究。尽管四个命题都可以运用定义去证明,但教材编排的证明顺序仍然值得教师在教学过程中引导学生去认识和体会生活中就近上车的道理。(3)在辅助线引入上应把精力放在辅助线的产生过程上,使学生不仅知道添什么,更要明白为什么这样添。这样既可以使学生加深对知识间的联系和作用的理解,同时还可以消除学生在添辅助线问题上的心理压力,使学生更有信心地学好几何。(4)定理证明研究之后,应安排一定的时间让学生消化理解并整理学习过的知识和研究方法,使学生把新知识和方法纳入已有的知识结构和方法结构中去,接着进行应用研究、练习。最后引导学生对本课的学习和研究进行小结。尽管可能各人的收获、体会不完全相同,但通过讨论和交流总可以受到相互启发。以上可以看出,在设计上注重了结论的探求过程和方法的思考过程的研究,由于学生亲自参加于知识的产生过程,由此对知识产生有一种亲近感,由此而陶冶出来的基本态度和思维能力则可以长久地保持并对变化的情况有广泛的适应性。

中考是中学教学的指挥棒。这已是不争之实。作为操纵这根指挥棒的命题专家,只有高度正视这一极其敏感的导向作用,才能用好中考既选拔可造之才又指引中国教育走向最佳之道的双重功用。这两年,中考命题的明显变化和初中数学课程改革的出台已体现了教育部有意将“指挥棒”指向了素质教育。数学教学大纲指出:“数学教学中,发展思维能力是培养能力的核心。”这就是说,数学的课堂教学不仅是数学知识的传授,更重要的是利用数学知识这个载体来发展学生的思维能力。数学思维的创新是思维品质的最高层次,只有多种品质协调一致发生作用,才能有助于创新思维能力的培养。只有正确的掌握了数学思想和数学方法,才有助于中学生在中考的人潮中独占鳌头。

猜你喜欢

数学方法数学思想创新思维
数学方法在化学平衡学习中的重要应用
浅析数学方法在金融学中的应用
月牙肋岔管展开图的数学方法解析
论简单估算数量级的数学方法