APP下载

构建建模意识培养创新思维

2009-03-30方先金

商情 2009年33期
关键词:数学建模创新思维

方先金

【摘要】提高中学数学教学质量,不仅仅是为了提高学生的数学成绩,更重要的是能使学生学到有用的数学。为此,笔者认为在中学数学教学中构建数学建模意识无疑是我们中学数学教学改革的一个正确的方向。本文结合自己的教学体会,从理论上及实践上阐述:一是构建数学建模意识的基本方法。二是通过建模教学培养学生的创新思维。

【关键词】数学建模 数学模型方法 数学建模意识 创新思维

一、数学建模与数学建模意识

著名数学家怀特海曾说:“数学就是对于模式的研究”。

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

具体的讲数学模型方法的操作程序大致上为:

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

二、构建数学建模意识的基本途径

1.为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。

2.数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

3.注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其它学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。

4.在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。

三、把构建数学建模意识与培养学生创造性思维过程统一起来

我认为培养学生创造性思维的过程有三点基本要求。第一,对周围的事物要有积极的态度。第二,要敢于提出问题。第三,善于联想,善于理论联系实际。因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

1.发挥学生的想象能力,培养学生的直觉思维

众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。

2.构建建模意识,培养学生的转换能力

恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。

3.以“构造”为载体,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”

我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。只要我们在教学中教师仔细地观察,精心的设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。

参考文献:

[1]沈文选.数学建模.湖南师大出版社,1999.

[2]中国教育学会中学数学教学专业委员会.面向21世纪的数学教学.浙江教育出版社,1997.

[3]胡炯涛,张凡.中学数学教学纵横谈.山东教育出版社,1997.

[4]黄立俊,方水清.增强应用意识,增强建模能力.中学数学杂志,1998.

[5]薛治刚.高中数学应用问题.吉林科学技术出版社,北京朗曼教学与研究中心,1998.

猜你喜欢

数学建模创新思维
在数学建模中培养学生的提问能力
数学建模中创造性思维的培养
谈数学建模时的问题分析步骤
树立建模意识 培养学生创新思维
物理教学中学生创新思维的培养研究
构建优质高中数学课堂,实现活力教学
最小二乘法基本思想及其应用
在经济新常态下地方本科院校大学生创新创业教育研究
巧用“错误”激活数学课堂的实践与思考
建模思想在数学教学中的渗透研究