初中学生数学思维能力的培养
2008-11-04孙学旺
孙学旺
现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学.如何在数学教学中培养学生的思维能力,使学生养成良好的思维品质,是教学改革的一个重要课题.本文谈谈初中学生数学思维培养的几点尝试.
一、要善于调动学生内在的思维能力
培养兴趣,促进思维.兴趣是最好的老师,也是每个学生自觉求知的内动力.教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使学生认识到数学在现实生活中的重要地位和作用.经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题.新教材中安排的“想一想”、“读一读”不仅能扩大知识面,还能提高学生的学习兴趣,是比较受欢迎的题材.
适当分段,分散难点,创造条件让学生乐于思维.如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程.因此,在教列代数式时,我有意识地为列方程的教学做一些准备工作,启发学生从错综复杂的数量关系中寻找已知与未知之间的内在联系.通过画草图列表,配以一定数量的例题和习题,使学生能逐步寻找出等量关系,列出方程.并在此基础上进行提高,指出同一题目由于思路不一样,可列出不同的方程.这样大部分学生都能较顺利地列出方程,碰到难题也会积极地分析思考.
鼓励学生独立思维.初中生受经验思维的影响,思维容易雷同,缺乏探索精神.教学中教师要鼓励学生敢于发表不同的见解.例如,比较大小,用“<”号连接下列各数:16/15、12/11、96/91、32/29,大部分学生都根据以往经验,利用通分,化为同分母进行比较,因而计算量大,但也有一些聪明的学生看出分子96分别是16、12、32的整数倍,只要使分子相同就可作比较.对这种学生,教师应该赞扬与肯定,促进学生思维的广阔性.
二、要教会学生思维的方法
孔子说:“学而不思则罔,思而不学则殆.”恰当地明示学思关系,才能取得良好的效果.在数学学习中要使学生思维活跃,教师就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式.
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的.数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提.在教学过程中,教师要提高学生由表及里、由此及彼的认识能力.在例题课中要把解(证)题思路的发现过程作为重要的教学环节.不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做、这样想的.这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程.
在数学练习中,学生要认真审题,细致观察,对起关键作用的隐含条件要有挖掘的能力.学会从条件到结论或从结论到条件的正逆两种分析方法.对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理或计算公式.在解(证)题过程中要学会数学语言、数学符号的运用.
初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”.要使学生熟练地掌握一些重要的数学方法,主要有配方法、换元法、待定系数法、综合法、分析法及反证法等.
三、要培养学生良好的思维品质
在学生初步学会如何思维和掌握一定的思维方法后,教师应加强学生思维能力的训练及思维品质的培养.
要注意培养思维的条理性与敏捷性.根据解题目标,确定解题方向.要训练学生思维清晰,条理清楚,遇到问题能按一定顺序分析、思考,对复杂问题应训练学生从局部到整体再从整体到局部的思维方法.在思维过程中,学生要能迅速发现问题和解决问题.
要注意培养思维的严密性和灵活性.每个公式、法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言之有据.选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析.例如,k是什么数时,方程kx2-(2k+1)x+k=0有两个不相等的实数根?很多学生只注意由△=[-(2k+1)]2-4k•k=4k2+4k+1-4k2=4k+1>0,推得k>-1/4.如果把k>-1/4作为本题答案就错了,因为当k=0时,原方程不是二次方程,所以还得把k=0这个值排除.正确的答案应是:-1/4 在复习时要精选一些有代表性、巩固性和灵活性的习题,从各种不同角度,寻求不同的解(证)法,进行“一题多解”的训练.还可改变条件进行“一题多变”和“多题一解”的训练.这是提高解题能力的重要措施. 培养学生思维能力的方法是多种多样的,要使学生思维活跃,最根本的一条,就是要调动学生学习数学的积极性,教师要善于启发、引导、点拨、解疑,使学生变学为思. 当然,良好的思维品质不是一朝一夕就能养成的,但只要根据学生实际情况,通过各种手段,坚持不懈,就必定会有所成效.