circMTO1参与宫颈癌发生发展的作用通路研究
2024-11-04文婷路会侠
摘要:宫颈癌严重威胁女性健康,寻找早期诊断敏感指标非常重要。环状RNAs(circRNAs)通过充当microRNA海绵与蛋白质相互作用参与恶性肿瘤的发生发展。circMTO1在许多恶性肿瘤中异常表达,在宫颈癌中,circMTO1通过miR-6893/S100A1通路可能以调节细胞周期、促进抗凋亡途径、促进血管形成的方式,以及通过miR-6893/自噬信号以促进DNA及染色体的损伤、诱发细胞氧化损伤的方式参与宫颈癌发生发展。本文对上述发生机制进行总结,以期为宫颈癌的诊断提供新思路。
关键词:宫颈癌;circMTO1;miR-6893;S100A1;自噬
中图分类号:R737.33 文献标识码:A DOI:10.3969/j.issn.1006-1959.2024.20.040
文章编号:1006-1959(2024)20-0183-05
Study on the Role of circMTO1 in the Development of Cervical Cancer
WEN Ting1,LU Huixia1,2
(1.Clinical Medical College,Dali University,Dali 671000,Yunnan,China;
2.Department of Gynecology,the First Affiliated Hospital of Dali University,Dali 671000,Yunnan,China)
Abstract:Cervical cancer is a serious threat to women's health. It is very important to find sensitive indicators for early diagnosis. circular RNAs (circRNAs) are involved in the occurrence and development of malignant tumors by acting as microRNA sponges to interact with proteins. circMTO1 is abnormally expressed in many malignant tumors. In cervical cancer, circMTO1 may participate in the development of cervical cancer by regulating cell cycle, promoting anti-apoptotic pathway, promoting angiogenesis through miR-6893/S100A1 pathway, and promoting DNA and chromosome damage and inducing cell oxidative damage through miR-6893/autophagy signal. This article summarizes the above-mentioned mechanisms, in order to provide new ideas for the diagnosis of cervical cancer.
Key words:Cervical cancer;circMTO1;miR-6893;S100A1;Autophagy
宫颈癌(cervical cancer)是发病率与死亡率均第一位的女性生殖道恶性肿瘤,全球每年约53万新发病例,27万死亡病例,其中近90%发生在发展中国家[1]。严重威胁女性的生命与健康。尽管宫颈癌治疗取得了很大进展,但死亡率仍然很高,且年轻病例越来越多。探索宫颈癌的发病机制,寻找针对早期癌症治疗方法,将其扼杀在摇篮里。线粒体翻译优化1同源物(mitochondrial translation optimization 1 homolog,MTO1)通过多种信号通路影响宫颈癌的发生发展,并参与调控宫颈癌对化疗的敏感性。环状(circ)RNA-MTO1(circRNA ID:hsa_circRNA _0007874)异常表达与多种癌症(包括肝细胞癌[2]、结直肠癌[3]、膀胱癌[4]等)的发生密切相关。miRNA本身不能翻译为蛋白质[5]。circRNA作为竞争性内源RNA(ceRNAs),以类似海绵的方式吸附靶微小(micro)RNA,抑制其与胞质中靶基因mRNA结合,实现调节靶基因表达的目的[6,7]。S100A1属于钙离子结合蛋白S100家族,通常在恶性肿瘤中过度表达[8,9]。miR-6893作为circMTO1的下游靶点首次在宫颈癌中被发现,miR-6893-5P被证实与前列腺癌的增殖和迁徙有关,两者均通过靶向调节S100A家族影响细胞生理和病理过程[10,11]。而circMTO1通过海绵化miR-6893,保护目标S100A1 mRNA不受降解从而导致宫颈癌发生,以及circMTO1通过增强Beclin1的表达,进而降低p62,导致宫颈癌发生的机制尚不清楚,因此本文对上述发生机制作一综述,以期对宫颈癌的发生发展有更清楚的认知,从而为宫颈癌的诊断提供新的思路。
1 circMTO1的生物学功能
circMTO1来源于MTO1基因的外显子2和3,剪接长度为318bp,由Han D等[2]首次在肝细胞癌中发现。circMTO1主要存在于细胞质中,在人体组织大量稳定表达[12],它是由MTO1前体mRNA非线性剪接形成的单链环状RNA,封闭的结构使得circMTO1更能抵抗RNA降解,可以作为miRNA海绵体介导不同的靶基因,调控相关的信号通路。circMTO1在大多数情况下是一种抑癌因子,抑制肿瘤细胞的增殖、迁移和侵袭,并诱导细胞凋亡,在少部分癌症中也可作为致癌因子[13]。
2 MTO1直接与miR-6893作用促进宫颈癌发生发展作用机制
circMTO1可直接与miRNA结合通过调节不同信号通路影响肿瘤的发生发展。Ge Z等[3]发现circMTO1可通过调控Wnt/β-连环蛋白(Wnt/β-catenin)信号通路影响结直肠癌细胞的生长和侵袭。过表达circMTO1可以通过下调miR-19b-3p,抑制Janus激酶1/信号转导及转录活化因子3(Janus kinase 1/Signal transducer and activator of transcription 3, JAK1/STAT3)和腺苷酸活化蛋白激酶(AMPK)信号通路,抑制直肠癌细胞增殖、迁移和侵袭,诱导细胞凋亡。Li Y等[4]研究表明circMTO1在膀胱癌细胞中的过表达可负调控上皮标记物E-钙黏蛋白/间质标记物N-钙黏蛋白(E-cadherin/N-cadherin)通路,竞争性结合miR-221,抑制细胞的上皮-间充质转化(epithelial-mesenchymal transition, EMT)和转移。
宫颈癌细胞中circMTO1水平较正常组织增加了3~4倍,可能是宫颈癌进展的致癌基因。在异种肿瘤移植试验中circMTO1敲低显著损害宫颈癌细胞的生长能力[11]。miR-6893抑制剂能够部分恢复shcircMTO1 HeLa细胞的肿瘤形成能力。因此miR-6893通过拮抗宫颈癌细胞的circMTO1抑制肿瘤发生。双荧光素酶报告基因分析显示[11],在有野生型circMTO1融合的pGL3构建体的细胞中,miR-6893模拟物明显减弱荧光素酶活性,而miR-6893抑制剂极大地促进了荧光素酶活性。同样,miR-6893水平在circMTO1敲除的HeLa细胞中升高,在circMTO1过表达的细胞中降低[11],表明circMTO1直接与miR-6893存在相互作用,可能可以作为治疗的切入点。
3 MTO1通过miR-6893/S100A1通路促进宫颈癌发生发展的作用机制
circMTO1可通过海绵化miRNA结合调节下游靶基因影响肿瘤的发生发展。circMTO1通过miR-541-5p/ZIC1轴调节Wnt/β-catenin信号通路和EMT,抑制肝细胞癌进展[14]。circMTO1作为miR-17的海绵,促进RNA结合蛋白震颤同系物-5(quaking-5, QKI-5)的表达,导致Notch信号通路失活,从而抑制肺癌的生长[15]。同样地,circMTO1作为miR-6893的海绵,保护目标S100A1mRNA不受miR-6893的依赖性降解,从而促进宫颈癌的发生发展。
S100A1是S100蛋白家族中的一员,主要在心肌中表达[16]。病理条件下异常表达与肿瘤发生发展有关[17]。S100A1通过糖基化终末产物受体(receptor for advanced glycation endproducts, RAGE)激活JAK/STAT、磷脂酰肌醇3激酶/蛋白激酶B(PI3K/PKB)和细胞外信号调节激酶/核因子κB(ERK/NF-κB)通路,最终激活促炎因子转录,包括肿瘤坏死因子-α(TNF-α)、白介素1β(IL-1β)以及其他导致活性氧(ROS)形成和凋亡的机制[18]。王蕾等[10]发现前列腺癌LNCaP细胞中miR-6893-5p使S100A16表达下调后,细胞周期依赖性激酶4(CDK4)、细胞迁移蛋白(N-cadherin)表达均降低,提示LNCaP细胞的增殖和迁移能力均被抑制。
circRNA通过海绵化miRNA,抑制其与靶基因mRNA结合,从而实现靶基因的调节。Mao Y等[19]发现真核翻译起始因子4G2(eukaryotic translation initiation factor 4G2, eIF4G2)可能通过海绵作用增加miR-218同源异形盒基因A1(HOXA1)的表达从而促进宫颈癌细胞的增值。circAMOTL1作为ceRNA,通过海绵化miR-485-5p增强AMOTL1表达,促进宫颈癌细胞的生长[20]。circRNA可以海绵化miRNA抑制其与钙离子结合蛋白mRNA结合[21]。因此,circMTO1可能通过吸附miR-6893,抑制其与S100A1mRNA结合从而控制S100A1的表达影响宫颈癌发生发展。shcircMTO1-或miR-6893 Mimi转染的宫颈癌细胞中,S100A1表达下调60%~70%。在敲除circMTO1引入S100A1或转染miR-6893模拟物引入S100A1的HeLa细胞中,S100A1水平比空白对照组细胞高5~7倍且HeLa细胞迁移和侵袭能力显著受损。S100A1显著挽救了shcircMTO1或转染miR-6893模拟物的HeLa细胞迁移和侵袭表型[11]。circMTO1通过吸附miR-6893,控制S100A1的表达影响宫颈癌发生发展的可能机制。
3.1改变细胞周期 细胞周期改变引起的增殖失调是肿瘤发生的重要环节,S100A1蛋白参与肿瘤细胞周期的调控[22]。S100A1过表达的子宫内膜癌细胞G2/M期细胞比例比对照组显著增加[23]。G2/M期细胞快速增长并合成大量有丝分裂所需蛋白质。其中,细胞分裂周期蛋白25同源蛋白C(CDC25C)起到重要作用。当处于M期起始阶段时,CDC25C转移至细胞核内,去磷酸化细胞周期蛋白依赖性激酶1(cyclin-de-pendent protein kinase 1, CDK1)中对应的抑制性位点,活化细胞周期蛋白B1(cyclin B1)-CDKl复合物,启动细胞的有丝分裂程序。CDC25C也控制着G2期检查点开关的闭合[24]。抑制CDC25C活性,G2/M期总开关尚未开启,细胞周期受阻[25],高表达的CDC25C导致多类CDKs的异常活化,细胞不经过周期检查点便启动,该过程可能和肿瘤的出现相关[26]。因此S100A1促进宫颈癌细胞增殖可能与调节细胞周期有关,具体作用机制尚不明确。
3.2促进抗凋亡途径 外源性S100A1可以通过结合RAGE受体,导致NF-κB信号通路激活,增强B淋巴细胞癌-2基因(B-cell lymphoma, Bcl-2)蛋白的抗凋亡活性。S100A1可以激活细胞外信号调节激酶(extracellular signal-regulated kinases, ERK)1/2信号级联反应,增强肿瘤细胞对凋亡的抵抗力[27]。Bcl-2半胱氨酸能与ERK 1/2形成Bcl-2-ERK复合物而抑制细胞凋亡[28]。快速增殖的恶性肿瘤组织中存在中心坏死区域,该区域环境中伴有相对的低氧血症,坏死的肿瘤细胞释放S100A1给周围肿瘤细胞,增加其生存优势、抑制细胞凋亡[29]。同样地,宫颈癌细胞能在相对缺氧的环境中存活,也可能是通过类似的机制。
3.3促进血管生成 血管生成是促进肿瘤生长及肿瘤转移的重要途径,其中血管内皮生长因子(VEGF)发挥了重要作用[30]。研究发现[31],S100A1的过表达显著上调了内源性VEGF-A的表达,VEGF-A可以诱导VEGFR2内化,S100A1被确定为VEGF-A/VEGFR2血管生成信号通路的有效启动子。VEGF-A可能激活磷脂酰肌醇3激酶/丝氨酸-苏氨酸激酶(PI3K/AKT),进而激活其下游的雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路,促进宫颈癌细胞的生长和侵袭。此外,VEGF/mTOR信号通路的激活可能通过激活cyclin 1和CDK4促进癌细胞的生长,并通过基质金属蛋白酶2(matrix metalloproteinase,MMP2)和MMP3促进癌细胞的侵袭[32]。也有报道称[33],VEGFR2通过蛋白激酶B/糖原合成酶激酶(AKT/GSK3)、β/β-catenin和锌指转录因子(zinc finger transcription factor, Snail)途径调控肿瘤诱导的血管生成和与EMT相关的干细胞特性。S100A1可能通过调控VEGF刺激肿瘤血管生成,从而促进宫颈癌的生长和增殖,在宫颈癌的发生发展中发挥一定作用。
4 circMTO1通过miR-6893/自噬信号传导通路促进宫颈癌发生发展的作用机制
Western blot显示,转染shcircMTO1的HeLa细胞中B细胞淋巴瘤-2蛋白相互作用中心卷曲螺旋蛋白1(B-cell lymphoma-2-interacting myosin-like coiled-coil protein 1, Beclin1)为低表达,同时泛素结合蛋白62(sequestosome 1, p62)为高表达水平,而circMTO1正常表达的HeLa细胞中Beclin1为高表达,同时p62为低表达水平;在HeLa细胞中加入miR-6893模拟物降低了Beclin1的表达,进而增加下游p62水平,反之,加入miR-6893抑制剂后Beclin1表达增加,从而降低p62表达水平[11]。因此,circMTO1可能通过miR-6893和自噬信号通路影响宫颈癌的发生、发展。自噬是一种溶酶体依赖性分解代谢途径,通过该途径可去除受损或衰老的细胞器,其在癌症治疗中发挥积极或消极作用,取决于细胞类型、微环境和肿瘤发展阶段,一方面自噬可增加肿瘤细胞对压力源的耐受性,有利于癌细胞在不利环境中的存活,另一方面其还可抑制肿瘤发生和转移,通过凋亡途径促进肿瘤细胞死亡[34]。Beclin-1是一种可将其他自噬蛋白定位在前自噬体位点的关键基因,作用与LC3类似,被认为是自噬标志物[35]。当自噬被触发时,微管相关蛋白1的轻链3(microtubule associated protein light chain3, LC3)从其可溶性形式LC3-Ⅰ转变为脂解性形式LC3-Ⅱ,并与自噬囊泡结合形成自噬体[36];自噬体与溶酶体融合后,溶酶体降解,底物结合的p62被蛋白水解酶降解,自噬下游过程的阻断可导致p62的积累,因此通常认为升高的p62表达是下游自噬抑制的标志[37]。Beclin-1也可能通过类似途径影响p62水平。作为自噬适配器,p62具有多个结构域,在细胞自噬过程中充当底物,并通过自噬途径降解。circMTO1通过miR-6893/自噬信号传导通路可能的作用机制。
4.1造成DNA及染色体的损伤 Tao M等[38]通过研究表明,自噬发生时,p62通过泛素相关结构域(ubiquitin associated domain, UBA)识别泛素化的细胞,并通过LC3相互作用区域将它们募集到自噬体膜上,导致细胞内p62水平降低,自噬减弱时,细胞内大量累积p62,导致染色体不稳定或DNA产生缺陷,增加宫颈癌的发生风险[39]。
4.2诱发细胞氧化损伤 p62的杀伤细胞免疫球蛋白样受体(killer cell immunoglobulin-like receptor, KIR)结构域能够与核因子E2相关因子2(Nrf2)竞争性结合Kelch样环氧氯丙烷相关蛋白-1(Epoxy Chloropropane Kelch Sample Related Protein-1, Keapl),其UBA结构与能够招募泛素连接蛋白并通过泛素-蛋白酶体系统(Ubiquitin-proteasome system, UPS)介导keapl的降解,这使得p62在keapl-Nrf2介导的ROS调节中发挥了重要作用[40]。作为抗氧化应激最主要的核转录因子,Nrf2表达不足是ROS清除减弱的重要原因。生理情况下,细胞合成Nrf2的同时亦降解Nrf2。未降解的Nrf2与Keap1结合为复合物,以非活性状态存在于胞质中。而氧化应激情况下,Keap1构象变化和(或)Nrf2磷酸化,活化的Nrf2与Keap1解偶联、易位至细胞核,先后与Maf蛋白、抗氧化反应原件结合,诱导下游抗氧化,解毒基因转录、表达,提高细胞抗氧化应激能力[41-43]。Nrf2作为机体抗氧化应激的重要因子,主要受Keap1调控,二者组成Keap1-Nrf2通路。肿瘤细胞高度活跃的增殖、分裂状态致使细胞内ROS升高,进而诱发细胞氧化损伤[44,45]。宫颈癌的发生发展也可能与此种机制发生的细胞氧化应激改变有关。
5总结
circRNA可以调节基因表达,并在肿瘤细胞的生物过程中发挥重要作用。circMTO1通过对circMTO1及S100A1的抑制或对miR-6893的促进抑制宫颈癌发生发展,也可通过miR-6893/自噬信号影响宫颈癌发生发展。这或许可为宫颈癌的预防和治疗提供新的方向。但是,目前对此通路的研究仍存在局限性。首先,circMTO1通过上述两条通路影响宫颈癌发生发展的机制仍未进行系统研究。第二,circMTO1可以同时结合大量的miRNAs,其中一些miRNAs还可以影响宫颈癌的发展。因此,以此作为诊断和治疗标志物应用于临床前仍需进一步证实。
参考文献:
[1]Small W Jr,Bacon MA,Bajaj A,et al.Cervical cancer: A global health crisis[J].Cancer,2017,123(13):2404-2412.
[2]Han D,Li J,Wang H,et al.Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression[J].Hepatology,2017,66(4):1151-1164.
[3]Ge Z,Li LF,Wang CY,et al.CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer[J].Eur Rev Med Pharmacol Sci,2018,22(23):8203-8209.
[4]Li Y,Wan B,Liu L,et al.Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition[J].Biochem Biophys Res Commun,2019,508(4):991-996.
[5]李艺佳,弓浩胜,单志鸣.miRNA在EV71型手足口病患儿中的表达及其诊断价值研究[J].国际医药卫生导报,2020,26(2):149-152.
[6]Thomson DW,Dinger ME.Endogenous microRNA sponges: evidence and controversy[J].Nat Rev Genet,2016,17(5):272-283.
[7]Hansen TB,Jensen TI,Clausen BH,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388.
[8]DeRycke MS,Andersen JD,Harrington KM,et al.S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival[J].Am J Clin Pathol,2009,132(6):846-856.
[9]Wright NT,Cannon BR,Zimmer DB,et al.S100A1: Structure, Function, and Therapeutic Potential[J].Curr Chem Biol,2009,3(2):138-145.
[10]王蕾,黄耿,叶志华,等.miR-6893-5p对前列腺癌LNCaP细胞增殖和迁移的抑制作用及机制研究[J].国际医药卫生导报,2021,27(15):2248-2251.
[11]Chen M,Ai G,Zhou J,et al.circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893[J].Biomed Pharmacother,2019,117:109064.
[12]Hu K,Qin X,Shao Y,et al.Circular RNA MTO1 suppresses tumorigenesis of gastric carcinoma by sponging miR-3200-5p and targeting PEBP1[J].Mol Cell Probes,2020,52:101562.
[13]Wang P,Zhou C,Li D,et al.circMTO1 sponges microRNA-219a-5p to enhance gallbladder cancer progression via the TGF-β/Smad and EGFR pathways[J].Oncol Lett,2021,22(1):563.
[14]Li D,Zhang J,Yang J,et al.CircMTO1 suppresses hepatocellular carcinoma progression via the miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling pathway and epithelial-to-mesenchymal transition[J].Cell Death Dis,2021,13(1):12.
[15]Zhang B,Chen M,Jiang N,et al.A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma[J].Cancer Biol Ther,2019,20(8):1127-1135.
[16]Fargnoli AS,Katz MG,Williams RD,et al.Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction[J].Gene Ther,2016,23(2):151-157.
[17]Guo Q,Wang J,Cao Z,et al.Interaction of S100A1 with LATS1 promotes cell growth through regulation of the Hippo pathway in hepatocellular carcinoma[J].Int J Oncol,2018,53(2):592-602.
[18]Gonzalez LL,Garrie K,Turner MD.Role of S100 proteins in health and disease[J].Biochim Biophys Acta Mol Cell Res,2020,1867(6):118677.
[19]Mao Y,Zhang L,Li Y.circEIF4G2 modulates the malignant features of cervical cancer via the miR-218/HOXA1 pathway[J].Mol Med Rep,2019,19(5):3714-3722.
[20]Ou R,Lv J,Zhang Q,et al.circAMOTL1 Motivates AMOTL1 Expression to Facilitate Cervical Cancer Growth[J].Mol Ther Nucleic Acids,2020,19:50-60.
[21]Zhuang Y,Wang S,Fei H,et al.miR-107 inhibition upregulates CAB39 and activates AMPK-Nrf2 signaling to protect osteoblasts from dexamethasone-induced oxidative injury and cytotoxicity[J].Aging (Albany NY),2020,12(12):11754-11767.
[22]Hibbs K,Skubitz KM,Pambuccian SE,et al.Differential gene expression in ovarian carcinoma: identification of potential biomarkers[J].Am J Pathol,2004,165(2):397-414.
[23]田甜,宋秀红,孔琰,等.S100A1在子宫内膜癌中的表达及其对子宫内膜癌细胞增殖的影响[J].现代妇产科进展,2022,31(6):417-421.
[24]Tummala R,Diegelman P,Fiuza SM,et al.Characterization of Pt-, Pd-spermine complexes for their effect on polyamine pathway and cisplatin resistance in A2780 ovarian carcinoma cells[J].Oncol Rep,2010,24(1):15-24.
[25]Lindqvist A,van Zon W,Karlsson Rosenthal C,et al.Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression[J].PLoS Biol,2007,5(5):e123.
[26]Boutros R,Lobjois V,Ducommun B.CDC25 phosphatases in cancer cells: key players? Good targets?[J].Nat Rev Cancer,2007,7(7):495-507.
[27]Huttunen HJ,Kuja-Panula J,Sorci G,et al.Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation[J].J Biol Chem,2000,275(51):40096-40105.
[28]Luanpitpong S,Chanvorachote P,Stehlik C,et al.Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells[J].Mol Biol Cell,2013,24(6):858-869.
[29]Harris AL.Hypoxia--a key regulatory factor in tumour growth[J].Nat Rev Cancer,2002,2(1):38-47.
[30]Hanahan D,Weinberg RA.Hallmarks of cancer: the next generation[J].Cell,2011,144(5):646-674.
[31]Yu Z,Zhang Y,Tang Z,et al.Intracavernosal Adeno-Associated Virus-Mediated S100A1 Gene Transfer Enhances Erectile Function in Diabetic Rats by Promoting Cavernous Angiogenesis via VEGF-A/VEGFR2 Signaling[J].J Sex Med,2019,16(9):1344-1354.
[32]Chen B,Zhang C,Dong P,et al.Molecular regulation of cervical cancer growth and invasion by VEGFa[J].Tumour Biol,2014,35(11):11587-11593.
[33]Prasad CB,Singh D,Pandey LK,et al.VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail[J].Int J Biochem Cell Biol,2022,142:106122.
[34]Fan H,He Y,Xiang J,et al.ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy[J].Redox Biol,2022,53:102339.
[35]Schmitz KJ,Ademi C,Bertram S,et al.Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status[J].World J Surg Oncol,2016,14(1):189.
[36]Levy JMM,Towers CG,Thorburn A.Targeting autophagy in cancer[J].Nat Rev Cance,2017,17(9):528-542.
[37]Yue Z,Guan X,Chao R,et al.Diallyl Disulfide Induces Apoptosis and Autophagy in Human Osteosarcoma MG-63 Cells through the PI3K/Akt/mTOR Pathway[J].Molecules,2019,24(14):2665.
[38]Tao M,Liu T,You Q,et al.p62 as a therapeutic target for tumor[J].Eur J Med Chem,2020,193:112231.
[39]Sánchez-Martín P,Saito T,Komatsu M.p62/SQSTM1: 'Jack of all trades' in health and cancer[J].FEBS J,2019,286(1):8-23.
[40]Xie C,Zhou X,Liang C,et al.Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer[J].J Exp Clin Cancer Res,2021,40(1):266.
[41]Baird L,Yamamoto M.The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway[J].Mol Cell Biol,2020,40(13):e00099-20.
[42]朱妍妍,王桐生,戴宁,等.金丝桃苷通过激活Keap1/Nrf2/HO-1通路保护小鼠GC-2细胞的氧化损伤[J].南方医科大学学报,2022,42(5):673-680.
[43]Sykiotis GP.Keap1/Nrf2 Signaling Pathway[J].Antioxidants (Basel),2021,10(6):828.
[44]Taguchi K,Yamamoto M.The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment[J].Cancers (Basel),2020,13(1):46.
[45]Mukhopadhyay S,Goswami D,Adiseshaiah PP,et al.Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers[J].Cancer Res,2020,80(8):1630-1643.
编辑/王萌
基金项目:1.云南省昆虫生物医药研发重点实验室开放课题(编号:AG2022008);2.大理大学第一附属医院院级课题(编号:DFYGG2022-04);3.大理市科技计划项目课题(编号:2022KBG015)
作者简介:文婷(1997.10-),女,云南楚雄人,硕士研究生,主要从事妇科肿瘤的研究
通讯作者:路会侠(1973.5-),女,云南大理人,博士,教授,硕士生导师,主要从事妇科肿瘤的研究