APP下载

杉木与木荷凋落物分解对杉木人工林土壤碳氮含量和酶活性的影响

2024-10-09周梦田刘莉付若仙李孝刚

摘要:【目的】凋落物回归影响着杉木(Cunninghamia lanceolata)人工林土壤碳氮循环,是杉木人工林可持续经营和土壤地力维持的重要过程。通过分析添加杉木与木荷(Schima superba)凋落物处理下土壤碳氮含量和酶活性的变化特征,为杉木人工林近自然化改造及林分管理提供依据。【方法】以30年生杉木人工林土壤为研究对象,分别添加杉木凋落物(S)、木荷凋落物(M)以及杉木与木荷凋落物混合物(SM),混合质量比例设置为m(杉木)∶m(木荷)=5∶1。通过60 d室内培养,测定不同处理土壤中铵态氮(NH+4-N)、硝态氮(NO-3-N)、土壤有机碳(SOC)、水溶性有机碳(WSOC)、酸溶性有机碳(HHOC)、碱溶性有机碳(AHOC)、难溶性有机碳(ROC)含量及酶活性[β-葡萄糖苷酶(GC),β-N-乙酰氨基葡萄糖苷酶(NAG),多酚氧化酶(PPO),亮氨酸氨基肽酶(LAP)]。基于单因素方差分析和冗余分析方法,研究不同处理下土壤碳氮含量与土壤酶活性的关系,探讨添加不同凋落物对杉木人工林土壤碳氮含量及酶活性的影响。【结果】①SM处理的土壤腐殖化程度高于添加单一凋落物的;在添加单一凋落物的处理中,M处理的土壤腐殖化程度较低,土壤中ROC含量占比较高。②处理至15和30 d时,S处理土壤的GC、NAG、PPO酶活性显著高于M处理土壤的;SM处理的可显著提高土壤GC和NAG活性。③相关分析表明,土壤中AHOC含量与GC活性呈极显著正相关;NAG活性与WSOC含量呈极显著正相关,与NH+4-N含量呈极显著负相关;而PPO活性与NO-3-N含量呈极显著负相关,与ROC、HHOC含量呈极显著正相关(Plt;0.01)。【结论】添加不同凋落物对杉木人工林土壤碳氮含量及酶活性产生显著影响。与添加木荷凋落物相比,添加杉木凋落物的土壤腐殖化程度较高,与碳氮循环相关的酶活性较高;与添加单一凋落物相比,添加杉木木荷凋落物混合物更有利于土壤腐殖化程度的提升,提高土壤碳氮转化酶活性,进而有利于杉木人工林土壤碳氮循环。

关键词:杉木人工林;凋落物分解;碳含量;氮含量;土壤酶

中图分类号:S718;S714"""" 文献标志码:A开放科学(资源服务)标识码(OSID):

文章编号:1000-2006(2024)05-0131-08

Effects of litter decomposition of Cunninghamia lanceolata and Schima superba on soil carbon contents, nitrogen contents" and enzyme activities in Cunninghamia lanceolata plantations

ZHOU Mengtian, LIU Li, FU Ruoxian, LI Xiaogang*

(College of Ecology" and" Environment, Nanjing Forestry University, Nanjing 210037, China)

Abstract: 【Objective】Litter regression can affect the soil carbon and nitrogen cycle, which is an important process of sustainable management and soil fertility maintenance in" Chinese fir(Cunninghamia lanceolata)plantations. The changes in soil carbon content, nitrogen content, and enzyme activity under the treatment of adding C. lanceolata and Schima superba litter were analyzed to provide" the" basis for nature-approximating transformation and stand management of C. lanceolata plantations.【Method】In the present study, 30-year-old C. lanceolata plantation soil was treated with C. lanceolata litter (S), S. superba litter (M), and a mixture of C. lanceolata and S. superba litter (mixed at a m (S)∶m (M)=5∶1, SM). After 60 days of incubation, the content of" ammonium nitrogen (NH+4-N), nitrate nitrogen (NO-3-N), soil organic carbon (SOC), water soluble organic carbon (WSOC), hydrochloric acid hydrolyzed organic carbon (HHOC), alkaline-hydrolyzable organic carbon (AHOC), recalcitrant organic carbon (ROC), and enzyme activities (β-glucosidase(GC); β-N-acetylglucosaminidase(NAG); polyphenol oxidase(PPO); and leucine aminopeptidase(LAP)) in the soil were measured in the different treatments. The relationship among soil carbon content, nitrogen content, and enzyme activity in different treatments was analyzed, and the effects of different litter on soil carbon content, nitrogen content, and enzyme activity in C. lanceolata plantations were evaluated.【Result】The degree of humification in the soil treated with mixed litter was increased compared to the soils treated with either litter alone. In the single litter treatment, the degree of humification with S. superba treatment was low, and the proportion of soil recalcitrant organic carbon (ROC) was relatively higher."" After 15 and 30 days of incubation, the soil GC, NAG" and PPO enzyme activities with C. lanceolata litter were significantly higher than those with S. superba litter. The decomposition of mixed litter significantly improved soil GC and NAG enzyme activities. The results of redundancy analysis and correlation analysis showed that soil AHOC content was significantly positively correlated with soil GC enzyme activity. NAG enzyme activity was positively correlated with soil WSOC content and negatively correlated with NH+4-N content, while PPO enzyme activity was negatively correlated with NO-3-N content and positively correlated with ROC and HHOC contents (Plt;0.01).【Conclusion】The addition of different litters significantly affects the soil carbon content, nitrogen content, and enzyme activity in C. lanceolata plantations. Compared to the addition of S. superba litter, the addition of C. lanceolata litter results in a higher soil humification degree, as well as higher enzyme activities related to the carbon and nitrogen cycle. Further, the addition of both C. lanceolata and S. superba litter is more beneficial in improving the degree of soil humification, soil carbon invertase activity, and nitrogen invertase activity compared to the addition of either litter alone, thus ultimately benefitting the soil carbon and nitrogen cycle of C. lanceolata plantations.

Keywords:Cunninghamia lanceolate plantation; litter decomposition; carbon content; nitrogen content;soil enzyme

杉木(Cunninghamia lanceolata)是我国重要的用材树种,其人工林面积居我国首位。然而,长期的纯林连栽导致杉木人工林土壤地力衰退问题日渐严重,制约着杉木人工林的可持续经营[1]。近年来,针阔树种的混交造林模式已被广泛采用,与阔叶树种混交可增加针叶林凋落物量、提高林分生产力[2-3],从而改善大规模针叶纯林栽培的不利影响[4-5]。研究发现,与针叶纯林相比,针阔混交林土壤pH及C、N等含量都有不同程度的增加[6-7]。杉木和木荷(Schima superba)混交是常见的杉木林混交方式,合理比例的杉木木荷混交不仅可以调整林分结构、提高林分生产力,还可以有效缓解土壤退化、维持土壤碳氮循环[8]。杨智杰等[9]研究发现杉木木荷混交林能够促进木荷单株凋落物的数量,同时混交林的碳归还量较杉木纯林有明显提升。此外,杉木木荷混交能够丰富林内物种多样性,与杉木纯林相比可以减轻病虫害发生[10]。因此,研究杉木木荷混交对于促进杉木人工林土壤碳氮循环,修复杉木人工林退化有重要意义。

凋落物作为人工林生态系统碳库的重要组成部分,是生态系统碳氮循环的基础。不同树种通过凋落物的初始化学性质及特定的生境条件影响其凋落物的分解及养分归还过程[11]。杉木属于常绿针叶树种,凋落物中所含的营养物质较少,木质素等难降解的物质较多,分解较为缓慢;而阔叶树种具有耐阴性强、凋落物量大等特点[12]。以往研究发现,不同树种凋落物混合可以促进土壤碳氮循环,有利于提高林分生产力及森林生态系统稳定性[13]。靳云铎等[14]通过杉木、木荷和闽楠(Phoebe bournei)凋落物分解实验,发现添加混合凋落物处理后土壤碱解氮含量提高了9.5%。王淳等[15]通过对华北落叶松(Larix principis-rupprechtii)和阔叶树种混合分解研究发现,凋落物混合分解可以促进碳的释放。在凋落物丰富的森林土壤中,腐殖质是土壤的重要组分[16],根据土壤中腐殖质的不同状态可将土壤有机碳分为水溶性有机碳(胡敏酸,WSOC)、酸溶性有机碳(富里酸,HHOC)、碱溶性有机碳(AHOC)和难溶性有机碳(ROC)[17]。添加不同树种凋落物可以通过改变土壤中酶活性、微生物群落结构等改善土壤有机质的分解,进而影响土壤中不同碳组分的积累或释放过程[18]。贾树海等[19]研究发现混交林土壤有机碳储量高于针叶纯林,并且针阔混交林土壤有机碳组分的构成更有利于土壤腐殖质稳定。凋落物分解本质上是复杂的酶解过程,土壤酶活性是判断土壤肥力的重要指标之一[20]。袁亚玲等[21]研究发现针阔凋落物混合分解时土壤纤维二糖水解酶、β-N-乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶等土壤碳氮转化酶活性升高;张晓曦等[22]发现针阔凋落物混合分解可显著提高土壤蔗糖酶、羧甲基纤维素酶和多酚氧化酶等碳转化相关酶活性。凋落物的初始化学特征是影响凋落物分解和土壤碳氮循环的关键因素,而土壤中碳、氮组分的动态是多种生物物理化学变化交互影响的综合过程,笼统将凋落物作为碳源进行研究可能会忽视土壤碳、氮转换过程中的关键环节。为此,以30年生杉木人工林土壤为研究对象,通过添加杉木木荷凋落物,分析不同处理下土壤碳氮含量和酶活性的变化特征,为杉木人工林近自然化改造及林分管理提供科学依据。

1 材料与方法

1.1 土壤及凋落物样品采集

供试土壤和凋落物于2022年2月26日采自福建省三明市沙县水南国有林场(117°47′E,26°72′N),该林场以人工林为主,主要树种为杉木、马尾松(Pinus massoniana)和木荷。土壤采集自该林场30年生杉木人工林,土壤类型为红壤,pH为4.5~5.5,总有机碳含量通常在20 g/kg以下。仔细去除植物根系和石块后,用孔径2 mm筛对土壤进行筛分、均质化后储存在4" ℃冰箱。选取该林场20年生人工林的杉木和木荷新鲜成熟叶片制备凋落物,带回实验室清洗干净后于105" ℃杀青30 min,65" ℃烘干至质量恒定,粉碎机研磨后过孔径0.25 mm筛并均质化。

1.2 实验设计

采用室内培养法,比较添加不同凋落物对土壤碳氮含量及碳氮酶活性的影响。试验设置了4个处理,包括不添加凋落物(CK)、添加杉木凋落物(S)、添加木荷凋落物(M)以及添加杉木与木荷凋落物混合物(SM),混合质量比例设置为m(杉木)∶m(木荷)=5∶1[5]。根据杉木、木荷凋落物的氮含量确定不同处理中凋落物的添加量(表1),使得每个培养瓶中含有等量的氮(0.25 g/kg)。以不添加凋落物的土壤为对照,比较不同凋落物对土壤碳氮含量及碳氮酶活性的影响。

称取80 g均质化的新鲜杉木人工林土壤于340 mL培养瓶中,根据凋落物现存量确定每个培养瓶中添加约1 g凋落物[23],培养瓶顶部设有直径1 cm的透气孔。所有的培养瓶在25" ℃有氧条件下孵育60 d,每个处理设置3个重复。在培养过程中,通过添加无菌水使含水率维持在36%,每隔7 d通过称质量法补充水分。在培养的第0、15、30、60天进行破坏性取样,共计39个土样。

1.3 样品分析

1.3.1 土壤化学性质分析

土壤pH采用电位法测定(水与土体积质量比为2.5∶1.0),土壤硝态氮(NO-3-N)含量采用酚二磺酸比色法测定,铵态氮(NH+4-N)含量采用靛酚蓝比色法测定[3],土壤有机碳(SOC)含量及不同碳组分含量(WSOC、HHOC、AHOC、ROC)浸提方法参考臧榕等[24]的方法,使用TOC仪(Analytik Jena multi C/N 3100,德国)测定,凋落物全氮含量和全碳含量使用元素分析仪(PerkinElmer 2400 Ⅱ,美国)测定。

1.3.2 土壤酶活性分析

土壤酶活性参照土壤酶试剂盒(北京索莱宝公司)使用说明测定,包括参与碳循环的β-葡萄糖苷酶(β-1,4-glucosidase, BG; EC为3.2.1.21)和多酚氧化酶(polyphenol oxidase, PPO; EC为1.10.3.1),参与氮循环的β-N-乙酰氨基葡萄糖苷酶(β-1,4-N-acetyl glucosaminidase, NAG; EC为3.2.1.30)和亮氨酸氨基肽酶(leucine aminopeptidase, LAP; EC为3.4.11.1)。其中,BG和NAG在37" ℃下孵育1 h后分别测定400 nm波长处的吸光值;PPO、LAP在30" ℃下孵育1 h后分别测定430、405 nm波长处的吸光值。活性单位参照文献[25]表示为U/g。

1.4 数据处理

试验数据采用 Excel 2019进行统计处理,数据分析使用SPSS 26软件完成,利用Origin 2021软件进行实验数据图表绘制。对符合方差齐性的指标进行基于邓肯(Duncan)双尾法的单因素方差分析,检验添加不同凋落物处理间的土壤养分及酶活的差异显著性,显著性水平设置为0.05,对土壤养分和酶活性之间的相关性进行冗余分析。

2 结果与分析

2.1 杉木和木荷凋落物对土壤化学性质的影响

测定结果(图1)显示,所有处理土壤的pH均呈强酸性,15 d添加杉木凋落物(S处理)土壤的pH显著高于不添加凋落物的土壤(CK处理),而添加木荷凋落物(M处理)在前期未表现出与CK处理有显著差异,在培养的第60天显著高于CK处理;与添加单一凋落物相比,添加杉木与木荷凋落物混合物(SM处理)显著提高了土壤的pH(Plt;0.05)。添加凋落物的土壤的NO-3-N和NH+4-N含量显著低于CK处理;添加不同凋落物的土壤的NH+4-N含量表现为:SM处理gt;M处理gt;S处理,S处理和SM处理土壤的NH+4-N含量之间差异显著(Plt;0.05)。

处理15 d时,添加不同凋落物土壤SOC、WSOC、AHOC、ROC含量与CK处理相比大多均显著提升(Plt;0.05)。其中,M处理土壤的SOC和ROC含量显著高于S处理,而S处理土壤中含有更高含量的WSOC和AHOC。SM处理的土壤的AHOC含量与M处理相比显著提升(Plt;0.05)。添加不同凋落物显著改变了土壤中不同碳组分的占比(图2),并且在不同的培养阶段表现类似。其中,WSOC和HHOC在添加不同凋落物的总有机质中占比部分区别明显。

添加单一凋落物的处理中S处理土壤AHOC含量显著高于CK处理和M处理;SM处理土壤中AHOC占比显著高于单一添加凋落物的处理(S处理、M处理,60 d除外)(Plt;0.05)。与之不同,所有添加凋落物的处理中,M处理土壤中ROC占比最高,显著高于S处理和SM处理;与CK处理相比,S处理和SM处理土壤中ROC占比显著降低(Plt;0.05)。

2.2 杉木和木荷凋落物对土壤碳氮转化酶活性的影响

经测定可知,添加凋落物显著提高了土壤碳氮转化酶的酶活性(图3)。由图3可知,在培养的第15天和30天,S处理的土壤中与碳转化相关的GC、PPO活性显著高于M处理。SM处理的土壤GC活性在培养的30和60 d时显著升高,而在培养15 d后PPO活性始终显著低于S处理和M处理(Plt;0.05)。在培养过程中,GC表现出升高的趋势,而PPO表现出下降的趋势。与氮转化相关的NAG在S处理的土壤中活性高于M处理;在培养的第15和30天,SM处理的土壤NAG酶活性显著高于M处理(Plt;0.05),与S处理的无明显区别。LAP活性在添加不同凋落物的土壤中未表现出显著差异,处理15 d后呈降低的趋势。结果表明,处理至15和30 d时,S处理的土壤GC、PPO、NAG活性与M处理相比较高,而相对CK,SM处理的土壤显著提高了土壤中的GC和NAG活性(Plt;0.05)。

2.3 土壤碳氮含量与碳氮酶活性的冗余分析

以添加不同凋落物处理土壤化学性质为响应变量,以土壤碳氮转化酶为解释变量进行RDA分析,结果表明,轴1和轴2分别占总变异的43.3%和7.7%(图4)。

根据冗余分析中质心原理和距离法则,GC活性与AHOC、WSOC、SOC含量呈正相关(图4),与NH+4-N含量呈负相关,其中AHOC与GC活性相关性最强;PPO活性与ROC、HHOC、SOC、WSOC含量呈正相关,与NH+4-N和NO-3-N含量呈负相关,与HHOC和NO-3-N含量的相关性最强;LAP活性与NO-3-N含量呈负相关;NAG活性与SOC、WSOC、AHOC呈正相关,与NH+4-N和NO-3-N含量呈负相关,其中与NH+4-N和WSOC含量的相关性最强。

NO3-N. 硝态氮nitrate nitrogen;NH+4-N.氨态氮ammonia nitrogen;SOC.土壤有机碳 soil organic carbon;WSOC.水溶性有机碳 water soluble organic carbon;HHOC.酸溶性有机碳 hydrochloric"" hydrolyzed organic carbon;AHOC.碱溶性有机碳 alkaline hydrolyzable organic carbon;ROC.难溶性有机碳 recalcitrant organic carbon;GC.β-葡萄糖苷酶 β-1,4-glucosidase;NAG.β-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetyl glucosaminidase;PPO. 多酚氧化酶 polyphenol oxidase;LAP. 亮氨酸氨基肽酶 leucine aminopeptidase。

根据冗余分析的结果,选取相关性较强的土壤碳氮转化酶活性与土壤碳氮含量作线性相关分析(图5)。结果表明,NAG活性与NH+4-N含量呈极显著负相关,与WSOC含量呈极显著正相关;PPO活性与NO-3-N含量呈极显著负相关,与ROC、HHOC含量呈极显著正相关;GC活性与AHOC含量呈极显著正相关关系(Plt;0.01)。

3 讨 论

在本研究中,与添加木荷凋落物相比,添加混合凋落物的土壤pH显著提升,说明针阔树种凋落物混合分解能够对纯针叶林土壤酸化起到一定的改善作用[3]。在培养的整个过程中,无机氮的存在形式以NH+4-N为主。添加杉木凋落物的土壤NH+4-N含量显著低于添加木荷的土壤,而与氮转化相关的NAG活性显著高于木荷处理。这说明杉木凋落物更有利于微生物活动,加速养分周转,导致与氮转化相关的NAG活性升高。添加混合凋落物下土壤NH+4-N含量及NAG活性与单一凋落物处理相比有所提升,更有利于土壤养分周转[26]。在本研究中,土壤中SOC含量显著高于添加杉木凋落物的土壤,这可能是木荷凋落物处理土壤中NH+4-N含量较高的原因之一[27]。

土壤中有机碳主要由AHOC和ROC组成,其中添加木荷凋落物的土壤ROC占比显著高于添加杉木凋落物的土壤,这可能与木荷凋落物的高碳氮比有关[28];与杉木凋落物混合分解使土壤ROC占比显著降低,说明凋落物混合分解有利于土壤中的难溶性有机碳分解、加速养分转化[29]。土壤AHOC含量在添加凋落物的处理中表现为:混合分解gt;杉木gt;木荷,这与刘谣等[30]的研究结果一致。AHOC/HHOC(胡敏酸/富里酸)比例的高低通常作为腐殖化程度的表现,其中AHOC比例越高,腐殖质化程度越高[31]。本研究中添加混合凋落物的土壤腐殖化程度最高,而添加杉木凋落物土壤的AHOC/HHOC显著高于添加木荷凋落物土壤的,这可能与杉木凋落物碳氮比较低、易转换分解有关[32]。在本研究中,添加杉木处理中与碳转化相关的GC和PPO活性显著高于木荷处理;凋落物混合添加可有效提升土壤中纤维素降解有关的GC活性,有利于土壤碳素循环,改善土壤肥力。

研究表明微生物利用土壤中的有机碳具有倾向性,优先利用易分解的有机质,土壤中碳氮含量变化是影响土壤酶活性的重要因素之一[33]。本研究中添加混合凋落物显著提高了土壤中AHOC含量,而土壤AHOC含量与碳转换相关的GC呈极显著正相关关系(Plt;0.01),说明土壤中碳氮酶活性对土壤腐殖化程度有直接的影响[34]。此外,土壤中与碳转换相关的PPO活性与ROC、HHOC含量之间呈极显著正相关关系,与NO-3-N含量呈显极著负相关关系(Plt;0.01),与氮转换相关的NAG活性与WSOC、NH+4-N含量呈极显著相关(Plt;0.01),说明土壤各碳组分作为酶的底物,其变化同时也影响着碳氮转化酶活性特征[35]。

参考文献(reference):

[1]王海伦,文仕知,何功秀,等.杉木人工林土壤养分含量与林木器官养分含量及林龄的关系[J].中南林业科技大学学报,2022,42(10):119-128.WANG H L,WEN S Z,HE G X,et al.Relationship between soil nutrient content,tree organ nutrient content and stand age in Cunninghamia lanceolata plantation[J].J Cent South Univ For Technol,2022,42(10):119-128.DOI: 10.14067/j.cnki.1673-923x.2022.10.014.

[2]汪凤林,张月全,陈爱玲,等.不同配比的杉木、火力楠凋落物中土壤酶活性的变化及其对凋落物分解的影响[J].福建农林大学学报(自然科学版),2017,46(5):576-583.WANG F L,ZHANG Y Q,CHEN A L,et al.Enzyme activity of litter and soil and its effect on litter decomposition under different combinations of Cunninghamia lanceolata and Michelia" macclurei[J].J Fujian Agric For Univ (Nat Sci Ed),2017,46(5):576-583.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2017.05.016.

[3]林开敏,章志琴,邹双全,等.杉木与阔叶树叶凋落物混合分解对土壤性质的影响[J].土壤通报,2006,37(2):2258-2262.LIN K M,ZHANG Z Q,ZOU S Q,et al.The influence of Chinese fir mixed with broad-leaf litter decomposition on character of forest soil[J].Chin J Soil Sci,2006,37(2):2258-2262.DOI: 10.19336/j.cnki.trtb.2006.02.011.

[4]周铭忠.杉木与不同阔叶树种混交造林试验[J].安徽农学通报,2017,23(8):104-105.ZHOU M Z.Afforestation experiment of Chinese fir mixed with different broad-leaved tree species[J].Anhui Agric Sci Bull,2017,23(8):104-105.DOI: 10.16377/j.cnki.issn1007-7731.2017.08.045.

[5]查美琴,成向荣,虞木奎,等.不同混交比例对杉木和大叶榉幼苗功能性状的影响[J].生态学报,2021,41(21):8556-8567.ZHA M Q,CHENG X R,YU M K,et al.Effects of mixing proportion on functional traits of Cunninghumia lanceolata and Zelkova schneideriana seedling[J].Acta Ecol Sin,2021,41(21):8556-8567.DOI: 10.5846/stxb202007311999.

[6]邓恢.马尾松阔叶树混交林土壤理化性质比较研究[J].福建林业科技,2012,39(1):41-44,52.DENG H.Comparison of the soil physical and chemical properties among various Pinus massoniana Lamb. and broadleaved trees mixed plantations[J].J Fujian For Sci Technol,2012,39(1):41-44,52.DOI: 10.3969/j.issn.1002-7351.2012.01.10.

[7]陈杰.白桦+红松人工混交林生态效益的研究[J].防护林科技,2019(9):27-28,36.CHEN J.Ecological benefits of artificial mixed forest of Betula platyphylla + Pinus koraiensis[J].Prot For Sci Technol,2019(9):27-28,36.DOI: 10.13601/j.issn.1005-5215.2019.09.008.

[8]夏丽丹,张虹,杨靖宇,等.杉木凋落物土壤生态功能研究进展[J].世界林业研究,2019,32(2):7-12.XIA L D,ZHANG H,YANG J Y,et al.Research advances in soil ecological functions of Cunninghamia lanceolata litters[J].World For Res,2019,32(2):7-12.DOI: 10.13348/j.cnki.sjlyyj.2018.0093.y.

[9]杨智杰,陈光水,谢锦升,等.杉木、木荷纯林及其混交林凋落物量和碳归还量[J].应用生态学报,2010,21(9):2235-2240.YANG Z J,CHEN G S,XIE J S,et al.Litter fall production and carbon return in Cunninghamia lanceolata,Schima superba,and their mixed plantations[J].Chin J Appl Ecol,2010,21(9):2235-2240.DOI: 10.13287/j.1001-9332.2010.0341.

[10]何善飞.杉木、木荷纯林及其混交林生长状况和病虫害调查分析[J].南方农业,2022,16(18):82-84.HE S F.Investigation and analysis of growth status,disease and insect pests in pure and mixed forests of Cunninghamia lanceolata" and Schima superba[J].South China Agric,2022,16(18):82-84.DOI: 10.19415/j.cnki.1673-890x.2022.18.026.

[11]周庭宇,肖洋,黄庆阳,等.森林凋落物分解的研究进展与展望[J].中国农学通报,2022,38(33):44-51.ZHOU T Y,XIAO Y,HUANG Q Y,et al.Forest litter decomposition:research progress and prospect[J].Chin Agric Sci Bull,2022,38(33):44-51.

[12]方碧江.杉木灰木莲混交林生长情况及土壤理化性质[J].森林与环境学报,2022,42(1):46-52.FANG B J.Analyses on growth and soil physical and chemical properties of Cunninghamia lanceolata and Manglietia conifera mixed forest[J].J For Environ,2022,42(1):46-52.DOI: 10.13324/j.cnki.jfcf.2022.01.006.

[13]沈杨阳,白彦峰,靳云铎,等.凋落物添加对不同龄级杉木林土壤养分与微生物特性的影响[J].中南林业科技大学学报,2022,42(3):114-125.SHEN Y Y,BAI Y F,JIN Y D,et al.Effects of litter additions on the soil nutrients and microbial properties in Cunninghamia lanceolata plantations of different stand ages[J].J Cent South Univ For Technol,2022,42(3):114-125.DOI: 10.14067/j.cnki.1673-923x.2022.03.012.

[14]靳云铎,白彦锋,沈杨阳,等.施肥和凋落物添加对杉木人工林土壤养分和土壤微生物特性的影响[J].华中农业大学学报,2021,40(5):72-80.JIN Y D,BAI Y F,SHEN Y Y,et al.Effects of fertilization and litter addition on soil nutrient and soil microbial properties of Chinese fir plantation[J].J Huazhong Agric Univ,2021,40(5):72-80.DOI: 10.13300/j.cnki.hnlkxb.2021.05.010.

[15]王淳,董雪婷,杜瑞鹏,等.华北落叶松与阔叶树种混合凋落叶分解过程中养分释放和酶活性变化[J].应用生态学报,2021,32(5):1709-1716.WANG C,DONG X T,DU R P,et al.Changes of nutrient release and enzyme activity during the decomposition of mixed leaf litter of Larix principis-rupprechtiiand broadleaved tree species[J].Chin J Appl Ecol,2021,32(5):1709-1716.DOI: 10.13287/j.1001-9332.202105.008.

[16]NEUMANN M,UKONMAANAHO L,JOHNSON J,et al.Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling[J].Glob Biogeochem Cycles,2018,32(5):784-798.DOI: 10.1029/2017GB005825.

[17]周焘,王传宽,周正虎,等.抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响[J].应用生态学报,2019,30(5):1651-1658.ZHOU T,WANG C K,ZHOU Z H,et al.Effects of thinning on soil carbon and nitrogen fractions in a Larix olgensis plantation[J].Chin J Appl Ecol,2019,30(5):1651-1658.DOI: 10.13287/j.1001-9332.201905.020.

[18]李其胜,杨凯,蒋伟勤,等.有机(类)肥料对作物产量、土壤养分及土壤微生物多样性的影响[J].江苏农业学报,2023,39(8):1772-1783.LI Q S,YANG K,JIANG W Q,et al.Effects of organic-like fertilizers on crop yield,soil nutrients,and soil microbial diversity[J].Jiangsu J Agric Sci,2023,39(8):1772-1783.DOI: 10.3969/j.issn.1000-4440.2023.08.018.

[19]贾树海,王薇薇,张日升.不同林型土壤有机碳及腐殖质组成的分布特征[J].水土保持学报,2017,31(6):189-195.JIA S H,WANG W W,ZHANG R S.Distribution characteristics of soil organic carbon and humus composition in different forest types[J].J Soil Water Conserv,2017,31(6):189-195.DOI: 10.13870/j.cnki.stbcxb.2017.06.031.

[20]GE X G,XIAO W F,ZENG L X,et al.Relationships between soil-litter interface enzyme activities and decomposition in Pinus massoniana plantations in China[J].J Soils Sediments,2017,17(4):996-1008.DOI: 10.1007/s11368-016-1591-2.

[21]袁亚玲,崔宁洁,张丹桔,等. 马尾松-香椿不同混合比例凋落物分解过程中的生态酶化学计量动态[J]. 应用与环境生物学报,2023,29(3):654-662. YUAN Y L,CUI N J,ZHANG D J, et al. Dynamics of ecoenzymatic stoichiometry of mixed leaf litters of Pinus massoniana and Toona sinensis with different proportions during the decomposition period[J]. Chin J Appl Environ Biol,2023,29(3):654-662. DOI:10.19675/j.cnki.1006-687x.2022.04007.

[22]张晓曦,刘慧,王博雅,等.云杉与阔叶树种新鲜凋落叶混合分解特征[J].生态环境学报,2019,28(2):235-244.ZHANG X X,LIU H,WANG B Y,et al.Characteristics of the mixed decomposition of fresh litter of Picea asperata and broadleaved species[J].Ecol Environ Sci,2019,28(2):235-244.DOI: 10.16258/j.cnki.1674-5906.2019.02.003.

[23]杨玉盛,郭剑芬,林鹏,等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.YANG Y S,GUO J F,LIN P,et al.Carbon and nutrient pools of forest floor in native forest and monoculture plantations in subtropical China[J].Acta Ecol Sin,2004,24(2):359-367.DOI: 10.3321/j.issn:1000-0933.2004.02.029.

[24]臧榕,赵海超,黄智鸿,等.土壤溶解性有机碳组分连续分级测定方法[J].科技创新导报,2018,15(29):83-87.ZANG R,ZHAO H C,HUANG Z H,et al.Method for continuous grading determination of dissolved organic carbon components in soil[J].Sci Technol Innov Her,2018,15(29):83-87.DOI: 10.16660/j.cnki.1674-098X.2018.29.083.

[25]唐敏,杨开宇,张赛男,等.硒对核桃种仁抗氧化酶活性及果实品质的影响[J].南京林业大学学报(自然科学版),2022,46(5):127-134.TANG M,YANG K Y,ZHANG S N,et al.Effects of selenium on the activities of antioxidant protective enzymes and fruit quality of walnut[J].J Nanjing For Univ (Nat Sci Ed),2022,46(5):127-134.DOI:10.12302/j.issn.1000-2006.202012032.

[26]邬子俊,段晓清,李文卿,等.混交对亚热带针叶树根际土壤氮矿化和微生物特性的影响[J].生态学报,2022,42(20):8414-8424.WU Z J,DUAN X Q,LI W Q,et al.Effects of tree mixture on rhizosphere soil nitrogen mineralization and microbial characteristics of coniferous trees in subtropical plantations[J].Acta Ecol Sin,2022,42(20):8414-8424.DOI:10.5846/stxb202110072766.

[27]ACCOE F,BOECKX P,BUSSCHAERT J,et al.Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age[J].Soil Biol Biochem,2004,36(12):2075-2087.DOI: 10.1016/j.soilbio.2004.06.006.

[28]CHENG X L,YANG Y H,LI M,et al.The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China[J].Plant Soil,2013,366(1):415-424.DOI: 10.1007/s11104-012-1446-6.

[29]WANG L F,CHEN Y M,ZHOU Y,et al.Environmental conditions and litter nutrients are key determinants of soluble C,N,and P release during litter mixture decomposition[J].Soil Tillage Res,2021,209:104928.DOI: 10.1016/j.still.2020.104928.

[30]刘谣,焦泽彬,谭波,等.川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J].植物生态学报,2022,46(3):330-339.LIU Y,JIAO Z B,TAN B,et al.Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan,China[J].Chin J Plant Ecol,2022,46(3):330-339.DOI: 10.17521/cjpe.2021.0166.

[31]张日升,贾树海,王薇薇.樟子松人工林土壤有机碳及腐殖质碳组成的变化特征[J].辽宁农业科学,2020(4):1-6.ZHANG R S,JIA S H,WANG W W.Variation characteristics of the composition of soil organic carbon and humus carbon in Pinus sylvestris var. mongolica plantations[J].Liaoning Agric Sci,2020(4):1-6.DOI: 10.3969/j.issn.1002-1728.2020.04.001.

[32]丛高,张志丹,张晋京,等.长白山不同林型土壤有机碳特征[J].水土保持学报,2019,33(3):179-184,191.CONG G,ZHANG Z D,ZHANG J J,et al.Research on characteristics of soil organic carbon in different forest types in Changbai Mountain[J].J Soil Water Conserv,2019,33(3):179-184,191.DOI: 10.13870/j.cnki.stbcxb.2019.03.027.

[33]鲍勇,高颖,曾晓敏,等.中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J].植物生态学报,2018,42(4):508-516.BAO Y,GAO Y,ZENG X M,et al.Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China[J].Chin J Plant Ecol,2018,42(4):508-516.DOI: 10.17521/cjpe.2017.0311.

[34]高海燕,闫德仁,张胜男,等.库布齐沙漠北缘苔藓结皮土壤酶活性及腐殖质组成特征[J].干旱区资源与环境,2023,37(3):162-168.GAO H Y,YAN D R,ZHANG S N,et al.Characteristics of soil enzyme activities and humus composition in mossy crust in the northern edge of Hobq Desert[J].J Arid Land Resour Environ,2023,37(3):162-168.DOI: 10.13448/j.cnki.jalre.2023.075.

[35]张晓曦,刘增文,邴塬皓,等.内蒙半干旱低山区不同纯林土壤腐殖质分异特征及其与其他生物化学性质的关系[J].应用生态学报,2014,25(10):2819-2825.ZHANG X X,LIU Z W,BING Y H,et al.Soil humus differentiation and correlation with other soil biochemical properties in pure forests in semi-arid low-hilly area of Inner Mongolia,China[J].Chin J Appl Ecol,2014,25(10):2819-2825.DOI: 10.13287/j.1001-9332.20140801.008.

(责任编辑 王国栋)

基金项目:江苏省碳达峰碳中和科技创新专项资金项目(BE2022420);国家自然科学基金项目(32122056)。

第一作者:周梦田(zmtclh@163.com)。

*通信作者:李孝刚(xgli@njfu.edu.cn),教授。

引文格式:周梦田,刘莉,付若仙,等. 杉木与木荷凋落物分解对杉木人工林土壤碳氮含量和酶活性的影响[J]. 南京林业大学学报(自然科学版),2024,48(5):131-138.

ZHOU M T, LIU L, FU R X, et al. Effects of litter decomposition of Cunninghamia lanceolata and Schima superba on soil carbon contents, nitrogen contents" and enzyme activities in Cunninghamia lanceolata plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2024,48(5):131-138.