基于响应面法的橡碗子色素染色丝绸工艺优化
2024-06-20葛立雯李永固姚铭毅苏淼赵丰
葛立雯 李永固 姚铭毅 苏淼 赵丰
DOI: 10.19398j.att.202311025
摘 要:橡碗子是中国古代最常用的黑色天然染料之一,也可用于现代生态染色。以硫酸亚铁为媒染剂,K/S值和Integ值作为响应值,采用响应面法(Response surface method, RSM)对橡碗子色素在丝绸上的染色工艺进行优化。先采用Plackett-Berman实验筛选出影响染色工艺的显色因素为染色温度、染料用量和媒染温度;再利用RSM获得橡碗子色素染色丝绸的最优染色工艺条件为染色温度86.5 ℃、染料用量200%(o.w.f)、媒染温度53.5 ℃。实验结果显示,RSM为橡碗子色素在丝绸上的染色工艺提供了一种简单可靠的优化方法,其中以Integ值为响应值的模型表现出了更优异的交互性。该优化工艺可为天然染料橡碗子的现代染色应用研究提供参考,也可为其他单宁类天然染料的染黑工艺研究提供借鉴。
关键词:天然染料;橡碗子;响应面法;K/S;Integ值
中图分类号:TS193.5;TQ611
文献标志码:A
文章编号:1009-265X(2024)06-0009-09
收稿日期:20231128
网络出版日期:20240320
基金项目:国家重点研发计划课题项目(2019YFC1520302)
作者简介:葛立雯(1999—),女,河南信阳人,硕士研究生,主要从事传统染料与染色技术方面的研究。
通信作者:赵丰,E-mail:zhaofeng@dhu.edu.cn
橡碗子,是壳斗科栎属植物麻栎的果实,分布于华东、中南、西南等地,含鞣质,单宁含量高,是中国棕色和黑色系染料的重要来源[1]。《考工记》《证类本草》《天工开物》和《多能鄙事》等古籍记载,橡碗子染色加入铁砂可得黑褐色[2]。1856年,William发明了第一个合成染料苯胺紫,之后人们开始广泛使用合成染料[3];但近年来因印染工业的环境污染问题,天然染料重新被诸多学者关注。据估计,在合成染料染色过程中,约10%~35%的染料在废水中流失[4];而源自动植物的天然染料无毒、不过敏、不致癌,且可生物降解。橡碗子,主要色素成分是鞣花酸,与新鲜配制的铁离子溶液结合时,鞣质先与铁盐生成无色的鞣酸亚铁,再经空气氧化生成不溶性的鞣酸高铁,产生蓝黑色系沉淀,沉积在纤维上[5],可进行生态染色。
为了探究橡碗子的染色应用,贾艳梅[6]研究了橡碗提取原液对羊毛染色时染色pH、温度对染色性能的影响,探讨了硫酸亚铁、硫酸铝钾等媒染剂对染色织物色度值及K/S值的影响。侯秀良等[7]研究了橡碗子染液的耐酸碱稳定性,以及染色时pH值与媒染剂对其染色工艺的影响,并且探究了其染色动力学。为了更快速高效地研究古代天然染料的染色工艺并进行优化,各种统计优化、机器学习算法被应用到天然染料的研究中。Haji等[8]使用响应面法(Response surface method,RSM)对天然染料小檗叶DC在羊毛上的染色工艺进行了优化。Haji等[9]还评估了人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)预测葡萄叶染色样品颜色强度的可靠性。Ben Ticha等[10]以葡萄糖为还原剂,结合Minitab 15中的数学模型对阳离子改性棉织物进行靛蓝染色工艺优化实验,得到了改性棉织物K/S值最高的染色工艺。Vedaraman等[11]比较了ANN和RSM对超声提取茜草色素的模型预测结果,发现ANN模型的预测结果与RSM的实验数据一致。RSM实验设计方法拟合预测效果好,操作简便,与其他复杂算法相比,能够以最小的资源利用率建立解决方案结果,可应用于处理多因素简单优化问题。
纵瑞龙等[12]研究发现,当复合染料具有两个或两个以上吸收峰,或者暗色染料没有明显最大吸收波长时,K/S值评估结果可靠度低。王娜等[13]研究了苏木提取液染黑蚕丝织物的染色工艺,在探讨染色性能时以Integ值作为评估值。贾艳梅等[14]在红花黄与黑米红对柞蚕丝织物的拼色染色工艺探究中使用了K/S值和Integ值两个色深值评估织物的色深。目前关于橡碗子色素染色丝绸的相关研究不多,其染黑性能的报道更是少见。本文先根据Plackett-Burman模型筛选出对橡碗子染色色深影响最大的3个显著因素,再以这些显著因素作为变量,以Integ值与K/S值作为响应值,使用RSM进行橡碗子色素的传统染色工艺响应面分析,建立橡碗子色素染色工艺优化模型,比较所得响应面模型的差别,探讨其染黑性能。本文可为天然染料橡碗子染色的现代利用提供参考。
1 实验
1.1 材料及仪器
材料:素绉缎(100 g/m2,杭州丝绸市场),橡碗子采集于河南南阳,一水合柠檬酸、氧化钙、硫酸亚铁(分析纯,上海阿拉丁生化科技股份有限公司)。
仪器:SYG-6数显恒温水浴锅(常州朗越仪器制造有限公司),雷磁pHS-3C(上海仪电科学仪器有限公司),CM-700d分光测色计(柯尼卡美能达(中国)投资有限公司),Datacolor SF1050电子测配色仪(美国德塔Datacolor公司),Design Expert 13(美国Stat-Ease公司)。
1.2 实验方法
1.2.1 染料提取与染色
提取染料:将染料干材放入烧杯中,加入10倍重量的水,煮沸,持续30 min后滤出。重复上述步骤2次,并将3次所滤染液定容至染料干材重量的30倍。
染色:取1 g素绉缎,以硫酸亚铁为媒染剂,按实验设计表进行前媒染,媒染浴比为1∶60。媒染结束后取出,放入橡碗子提取液中按照实验设计表进行染色,染色浴比为1∶60,染色结束后取出染色布样,预媒染同样条件再进行一次后媒染。其中pH值用雷磁pHS-3C测量,并用柠檬酸调节至相应值。
1.2.2 Plackett-Burman实验筛选显著性因素
实验开始前对影响染料染色的7个因素(染色时间、染料用量、染色温度、媒染剂浓度、媒染时间、媒染温度、pH)进行预实验,初步确定每个因素的高水平和低水平。橡碗子Plackett-Burman实验设计因素水平及编码见表1。在此条件下进行Plackett-Burman实验,比较每个因素对整体实验的影响。
1.2.3 RSM优化
使用RSM实验设计(CCD)来确定响应值(Integ值和K/S值)与过程变量(每种染料PBD实验筛选出来的因素)间的关系。完成实验后,通过数学建模和RSM计算出橡碗子色素丝绸染色的最佳工艺,并对此进行回归方程分析。
1.3 测试方法
1.3.1 色度表征与分析
用CM-700d分光测色计测定试样的K/S值,读取染色色样在吸收波长(λ=400 nm)处测得的反射率R,计算K/S值。用Datacolor SF1050电子测配色仪测定试样的Integ值。测定条件为D65光源、10°标准视角,染色试样折叠4层,对试样不同部位测定4次,取平均值。采用Integ值和K/S值两个色深值来表征,比较两者的差异,Integ值和K/S值越大,染色蚕丝织物表观颜色深度越深。K/S值用式(1)计算:
K/S=(1-Rλ)2/2Rλ (1)
式中:Rλ-样品在最大吸收波长处观察到的反射率。Integ值用式(2)—(5)计算:
Integ=F(X)+F(Y)+F(Z)(2)
F(X)=∑S(λ)(K/S)(λ)x(λ)(3)
F(Y)=∑S(λ)(K/S)(λ)y(λ)(4)
F(Z)=∑S(λ)(K/S)(λ)z(λ)(5)
式中:F(X)、F(Y)、F(Z)是表征色深的函数,称为伪三刺激值。
1.3.2 染色牢度
染色蚕丝织物的耐皂洗色牢度按照ISO 105-C06—2010/Textiles-Tests for colour fastness-Part C06: Colour fastness to domestic and commercial laundering测定,耐摩擦色牢度按照ISO 105-X12—2016/Textiles-Tests for colour fastness-Part X12: Colour fastness to rubbing测定,耐日晒色牢度按照ISO 105-B02—2014/Textiles-Tests for colour fastness-Part B02: Colour fastness to artificial light: Xenon arc fading lamp test测定。
2 结果和讨论
2.1 Plackett-Burman实验结果与讨论
Plackett-Burman实验设计和结果见表2。对表2中橡碗子染料的Plackett-Burman实验数据模型分
别进行显著性实验,以K/S值和Integ值为响应值的拟合统计结果分别见表3和表4。以K/S值、Integ值为响应值的模型的决定系数R2分别为96.78%、98.26%,修正决定系数R2Adj与预测决定系数R2Pred之间的差值都小于0.2,表示二者在合理范围内接近。以K/S值、Integ值为响应值的实验模型F值分别为17.18、32.21,大于4,说明干扰较小,实验结果可靠。K/S值和Integ值均可作为PBD筛选实验的响应值。
P值高于0.05的模型项被认为是不显著的,综合以上两个模型的P值可看出:对橡碗子色素染色色深影响最大的是染色温度,两个模型都具有较高显著度(P<0.01);其次是染料用量和媒染温度。
2.2 RSM实验结果与讨论
根据Plackett-Burman实验结果,在橡碗子RSM所有染色实验中,染色时间、媒染时间、媒染剂含量和pH 4个染色条件分别为45 min、15 min、10%(o.w.f)和3.5,以两个响应值方差分析结果综合选取对色深值影响显著的3个因素,即染色温度(X1)、
媒染温度(X3)、染料用量(X6)3个因素为响应面模型的自变量,进行Central Composite Design实验设计,比较两个响应函数作为响应值的可靠度及优缺点。表5展示了橡碗子色素染色实验设计及响应值,其中以K/S值和Integ值为响应值的拟合统计结果分别见表6和表7。
RSM模型(以K/S值为响应值)的R2、R2Adj和R2Pred分别为96.71%、93.42%和83.71%。获得的编码因子的回归方程为:
K/S=13.47+1.54X1-0.091X3+1.03X6-0.0125X1X3-0.1375X1X6-0.0375X3X6-1.01X12-0.1162X32-0.6166X62。
RSM模型(以Integ值为响应值)的R2、R2Adj和R2Pred分别为0.9563、0.9307和0.7422。获得的编码因子的回归方程为:
Integ=23.13+2.99X1+1.47X3+2.46X6-0.0350X1X3+0.0275X1X6-0.3225X3X6-1.44X12-0.4794X32-0.4094X62。
两个模型的决定系数R2都接近1,说明模型对响应与各影响因素之间的关系拟合较好,实验模型的F值分别为29.37、27.85,说明可信度高。进一步证实Integ值和K/S值适合作为橡碗子色素在丝绸上的染色工艺优化的RSM筛选的响应值。
2.3 响应曲面图分析
图1(a)—(b)为染色温度和媒染温度交互的
响应面图,从图中可观察到在染色温度升高至90 ℃上下前,随着染色温度的增高,K/S值和Integ值均
增大。这是因为染色温度升高利于染料分子的动能增高和蚕丝纤维溶胀,从而使染料分子更好地从染浴向蚕丝纤维扩散;另外,水溶性染料的聚集会影响纺织纤维的上染率,提高染料溶液温度可减少聚集数[15]。然而,在染色温度升至90 ℃上下后,染色样品的K/S值保持不变(见图1(a)),Integ值开始下降(见图1(b))。这是因为Integ值对灰色、棕色等暗色染料的色深变化更灵敏。但根据Integ值和K/S值响应面趋势评估染色样品的上染情况,染色温度增高至90 ℃后对染色样品的色深的增加都无正向作用。
图1(c)—(d)为染色温度和染料用量交互的响应面图,从图中可观察到随着溶液中染料浓度增加,染色丝绸的色深增加。这是因为染料分子从染浴到纤维表面的吸附增加,初始染料浓度增加,浓度梯度的驱动力会增加,所以使得纤维上吸附的染料增加[16]。另外两个响应面上升趋势基本一致,说明染料用量对K/S值和Integ值的影响相似。
图1(e)—(f)为染料用量和媒染温度的交互响应面图,从图中可观察到随着媒染温度的升高,K/S值无变化,Integ值虽趋势平缓,但在90 ℃左右时出现拐点。等高线的形状也能反映交互作用的大小,若呈椭圆形,说明两因素的交互作用显著。所以两组响应面对比可见以Integ值为响应值的模型交互作用更显著。
根据橡碗子色素染色的响应面模型和等高线结果对比发现两组响应面图相似,具有一致性,这可以说明以K/S值和Integ值为响应值的两个模型都提供了可靠的预测。但以Integ值为响应值的模型在因素交互和显著性方面表现均优于K/S值,这是因为K/S值只与最大吸收波长处的吸收和散射有关,而Integ值反映了整个可见光范围内光的吸收和散射情况[12]。
2.4 染色最优工艺和验证实验
本研究采用Design Expert软件的优化功能预测了橡碗子色素丝绸染色的最优工艺条件,根据得到的数学模型计算出色深值最高时对应的实验条件,并在RSM实验条件范围内取值。橡碗子两个模型都有足够的可靠性,故采用两个响应值一起预测。预测橡碗子色素染色最高K/S值为14.1,Integ值为27.3,与之对应的染色条件分别为:染色温度86.5 ℃、媒染温度为53.5 ℃,染料用量为200%(o.w.f),染色时间45 min、媒染时间15 min、媒染剂含量10%(o.w.f)和pH 3.5。将计算出的最优工艺条件进行验证实验,测得橡碗子色素染色丝绸的K/S值为14.0、Integ值为27.2,与RSM预测结果接近,这意味着从RSM得出的模型可充分描述橡碗子色素染色条件各影响因素与染色结果之间的关系。
2.5 染色丝绸色牢度
在最优染色工艺染色温度86.5 ℃、媒染温度为53.5 ℃,染料用量200%(o.w.f),其他染色时间45 min、媒染时间15 min、媒染剂含量10%(o.w.f)和pH 3.5的染色条件下染得蚕丝织物及其色牢度等级如表8所示。结果表明,染色丝织物具有良好的耐洗、耐摩擦、耐日晒牢度,均在3级以上。
3 结论
本文采用橡碗子提取液对丝织品进行染色,使用Plackett-Burman筛选与RSM法结合对其染色工艺进行优化,主要结论如下:
a)橡碗子提取液染色的最优工艺条件为染色温度为86.5 ℃、染料用量为200%(o.w.f)、媒染温度为53.5 ℃。
b)染色结果表明,提高染料用量和染浴温度可增强橡碗子染色丝绸的K/S值和Integ值,但媒染温度不宜超60 ℃。
c)RSM实验结果表明,Integ值更适合作为天然染料橡碗子染色的响应值,更能准确地反映色深变化,因素交互性更好,验证结果与预测值相符,模型设计合理,稳定可靠。
d)橡碗子提取液染色丝织物的各项色牢度均在3级以上。
本文建立的优化分析工艺模型在橡碗子色素染色研究上具有可靠性,可为天然染料橡碗子色素染色的现代应用提供一定的参考;此外也可对主要成分为鞣花酸的其他单宁类黑色天然染料的染黑工艺的研究提供借鉴。
参考文献:
[1]FERREIRA E S B, HULME A N, MCNAB H, et al.The natural constituents of historical textile dyes[J]. Chemical Society Reviews, 2004, 33(6): 329-336.
[2]赵翰生,王越平. 五彩彰施:中国古代植物染色文献专题研究[M]. 北京:化学工业出版社, 2020:24-27.
ZHAO Hansheng,WANG Yueping. Colorful Display: A Special Study on Ancient Plant Dyeing Literature in China[M]. Beijing: Chemical Industry Press, 2020:24-27.
[3]HOLME I. Sir William Henry Perkin: A review of his life, work and legacy[J]. Coloration Technology, 2006, 122(5): 235-251.
[4]SIVAKUMAR V, ANNA J L, VIJAYEESWARRI J, et al. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather[J]. Ultrasonics Sonochemistry, 2009, 16(6): 782-789.
[5]BHUTE A. Plant based dyes and mordant: A review[J]. Journal of Natural Products and Plant Resources, 2012, : 649-664.
[6]贾艳梅. 橡碗提取液对羊毛的染色、抗菌及抗紫外线性能[J]. 印染助剂, 2017, 34(9): 36-40.
JIA Yanmei. Dyeing behavior, antimicrobial activity and UV-protection properties wool dyed with extracts from valonea[J]. Textile Auxiliaries, 2017, 34(9): 36-40.
[7]侯秀良, 杨瑞玲, 郭盟盟, 等. 麻栎壳斗染料在羊毛染色中的应用[J]. 天然产物研究与开发, 2011, 23(6): 1113-1117.
HOU Xiuliang,YANG Ruiling,GUO Mengmeng, et al. Application of vegetable dye extracted from cupule of Quercus acutissima Carr. on wool fabrics[J]. Natural Product Research and Development, 2011, 23(6): 1113-1117.
[8]HAJI A, RAHIMI M. RSM optimization of wool dyeing with Berberis Thunbergii DC leaves as a new source of natural dye[J]. Journal of Natural Fibers, 2022, 19(8): 2785-2798.
[9]HAJI A, PAYVANDY P. Application of ANN and ANFIS in prediction of color strength of plasma-treated wool yarns dyed with a natural colorant[J]. Pigment & Resin Technology, 2020, 49(3): 171-180.
[10]BEN TICHA M, MEKSI N, DRIRA N, et al. A promising route to dye cotton by indigo with an ecological exhaustion process: A dyeing process optimization based on a response surface methodology[J]. Industrial Crops and Products, 2013, 46: 350-358.
[11]VEDARAMAN N, SANDHYA K V, CHARUKESH N R B, et al. Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates[J]. Chemical Engineering and Processing: Process Intensification, 2017, 114: 46-54.
[12]纵瑞龙, 王建明, 郝新敏. K/S值与Integ值差异的探讨[J]. 印染, 2006, 32(24): 30-33.
ZONG Ruilong,WANG Jianming,HAO Xinming. Discussion of difference between K/S value and Integ value[J]. Dying and Finishing, 2006, 32(24): 30-33.
[13]王娜, 徐李聪. 苏木对蚕丝织物的黑色染色性能[J]. 印染, 2020, 46(5): 43-46.
WANG Na,XU Licong. Black dyeing performance of silk fabric with sappanwood[J]. China Dyeing & Finishing,2020, 46(5): 43-46.
[14]贾艳梅, 史晓宇. 红花黄与黑米红对柞蚕丝织物的拼色研究[J]. 丝绸, 2015, 52(7): 19-23.
JIA Yanmei, SHI Xiaoyu. Combination dyeing of tussah silk fabrics with safflower yellow and black rice red.[J] Journal of Silk, 2015, 52(7): 19-23.
[15]HADDAR W, BEN TICHA M, MEKSI N, et al. Application of anthocyanins as natural dye extracted from Brassica oleracea L. var. capitata f. rubra: Dyeing studies of wool and silk fibres[J]. Natural Product Research, 2018, 32(2): 141-148.
[16]SHABBIR M, RATHER L J, SHAHID-UL-ISLAM, et al.An eco-friendly dyeing of woolen yarn by Terminalia chebula extract with evaluations of kinetic and adsorption characteristics[J]. Journal of Advanced Research, 2016, 7(3): 473-482.
Optimization of the silk dyeing process of oak acorn by response surface method
GE Liwen, LI Yonggu, YAO Mingyi, SU Miao, ZHAO Feng
(College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University,
Hangzhou 310018, China)
Abstract:
Before the advent of synthetic dyes, natural dyes had a long history of use and were very widely used in the world. Black is one of the five normative colors in China and it has been a great demand for successive dynasties, so black natural dyes are indispensable in China's dyeing history. Oak acorn, the fruit of Quercus acutissima, is one of the most important sources of brown and black dyes in China. Its main component is tannin. Many ancient books, such as Compendium of Materia Medica, Be Capable of General Affairs, and T'ien-kung k'ai-wu, recorded the dyeing process related to oak acorn. With the advent of synthetic dyes, the use of natural dyes fell silent for a long time. However, natural dyeing has regained popularity in recent years due to contemporary consumer interest in environmentally friendly printing and dyeing, as well as the discovery of the many benefits of using natural dyes derived from plants and animals.
To explore a faster, more efficient and scientific dyeing process of oak acorn, response surface method (RSM) was used to optimize the oak acorn dyeing process, with ferrous sulfate as the mordant, K/S value and Integ value as the response values. In this study, the factors influencing the dyeing process, such as dyeing temperature, dye concentration, mordanting temperature, mordant concentration, dyeing time, mordanting time, and pH, were investigated by using the Plackett-Berman experiment to screen the significant influencing factors on oak acorn dyeing. Factors with P-values higher than 0.05 were considered as insignificant. Based on the P-value, the factor of dyeing temperature was found to be the most influential factor on the color depth of oak acorn dyeing, followed by dye concentration and mordanting temperature. After the significant factors were clarified, the response surface method (RSM) was carried out. Then, the response surface results were obtained and the response surface model was analyzed, based on which the interaction between oak acorn dyeing results and each dyeing factor was analyzed. Finally, the optimal oak acorn dyeing process was obtained. Based on the above, the optimization model of the oak acorn dyeing process was established and the differences of the obtained response surface models of K/S value and Integ value were compared. It is found that the optimal oak acorn dyeing process requires a dyeing temperature of 86.5 ℃, a dye concentration of 200% (o.w.f), and a mordanting temperature of 53.5 ℃. The dyeing results show that increasing the dye concentration and dyeing temperature can improve the K/S and Integ values of acorn-dyed silk, but the mordanting temperature should not exceed 60 ℃. The results of RSM experiments show that the Integ value is more suitable as the response value of natural dye oak acorn dyeing, and can more accurately reflect the change of color depth. The validation results are in line with the predicted values, which indicates that the model is reasonable in design, stable and reliable. In addition, the color fastness results of silk show that the dyed silk fabrics have good resistance to washing, rubbing and sunlight, which are all above grade 3.
The experiments show that RSM provides a simple and reliable method to optimize the oak acorn dyeing process. It also provides reference for the subsequent deconstruction of the dyeing methods recorded in ancient documents. In addition, it is found from the analysis of the dye composition in this study that the up-dyeing components are ellagic acid. Therefore, the experimental design of this study may have important reference significance for the process optimization of tannin-based natural dyes containing ellagic acid.
Keywords: natural dyes; acorn; RSM; K/S; Integ values