湖相热液白云岩成因机理
——以准噶尔盆地玛湖凹陷二叠系风城组为例
2024-02-26王剑周路刘金马聪卞保力李啸张宝真
王剑,周路,刘金,马聪,卞保力,李啸,张宝真
1.西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2.中国石油新疆油田分公司实验检测研究院,新疆克拉玛依 834000
3.西南石油大学地球科学与技术学院,成都 610500
4.中国石油新疆油田分公司勘探开发研究院,新疆克拉玛依 834000
5.中国石油新疆油田分公司风城作业区,新疆克拉玛依 834000
0 引言
白云岩是重要的油气储集层。关于白云岩的成因,海相白云岩研究较为完善,如蒸发白云石化作用,混合水模式和热对流模式等[1-4]。白云岩虽形成模式众多,均需解释清楚的基本问题是形成温度、盐度、水体性质,尤其是Mg 离子的来源。相较于海相白云岩,湖相白云岩的成因研究则较晚,研究程度较为薄弱。杨威等[5]提出蒸发作用—准同生白云化作用,认为在强蒸发环境中湖泊水体最先沉淀出石膏晶体,导致Mg2+/Ca2+比值增高,沉淀物中方解石或文石发生白云化作用。李得立等[6]通过对东营凹陷的白云岩夹层成因研究,认为毛细管浓缩作用或蒸发泵作用形成高Mg2+/Ca2+的孔隙水会引起表层碳酸钙沉积物发生准同生白云岩化。李红等[7]、柳益群等[8]、文华国等[9]提出热液白云岩化作用,即深部热液沿断裂通道运移至碳酸盐岩地层中,使白云岩发生重结晶和过度白云岩化,或使灰岩发生白云化,并形成大量交代成因和胶结型白云岩。
相较于其他模式,湖相热液成因白云岩是近些年沉积学研究的热点。但存在的问题在于湖相白云岩矿物组成复杂,有白云质泥岩、白云质粉砂岩、凝灰质白云岩和泥质白云岩等,白云石的产出状态多样,有层状分布、杂散状分布、团块状分布等。因此热液是如何作用形成白云岩有待进一步细化研究。准噶尔盆地玛湖凹陷二叠系风城组白云岩储层发育,是风城组油藏最重要的储集岩类[10-11]。风城组白云石产出状态复杂,为湖相白云岩成因研究提供了良好的基础。研究采用岩心观察描述、岩石薄片鉴定、碳氧同位素、稀土元素、XRF元素分析,对白云岩分布、产状及形成环境进行系统研究,探讨了湖相白云岩的形成机理及模式,以期为湖相白云岩沉积学进一步深入研究提供实例和基础。
1 地质概况
研究区位于准噶尔盆地西北缘玛湖凹陷。早二叠世该区处于前陆盆地短期伸展阶段,火山活动具有间歇性和幕式活动特征。玛湖凹陷风城组总体为向凹陷内倾斜,西北厚、东南薄的地层楔形地质体,是早二叠世前陆盆地构造背景上发育的一套湖相沉积[12-13](图1a),风城组地层厚800~1 800 m,从下至上划分为三段,风一段(P1f1)厚400~500 m、风二段(P1f2)厚300~450 m、风三段(P1f3)厚250~300 m。风一段下段为火山岩夹火山碎屑岩沉积,上段为湖进期白云岩及富有机质泥岩;风二段沉积期陆源碎屑输入受限,主要发育富有机质泥岩和白云岩,湖盆中心还发育碳酸氢钠石、石盐等指示高盐度沉积水体的矿物,表明沉积环境为强蒸发高盐度环境;风三段沉积期水体盐度有所降低,岩性与风一段上段类似(图1b)。
风一段总体上发育扇三角洲前缘、深湖—半深湖亚相和凝灰岩类沉积物,此时的白云岩分布范围最小,主要分布于半深湖相。风二段沉积期湖泊面积最大,仍然发育扇三角洲前缘和深湖—半深湖和滨浅湖,仅在局部发育凝灰岩类沉积物,此时的白云岩分布范围也明显增大,主要分布于深湖—半深湖和滨浅湖,在湖盆边缘白云岩厚度有所减薄,在凝灰岩沉积区也发育了厚度不等的白云岩;风三段湖盆面积略微减小,对应白云岩分布范围明显萎缩,扇三角洲区基本没有发育白云岩,仅在滨浅湖和凝灰岩沉积区发育了厚度不等的白云岩。
2 云质岩矿物学特征
白云岩在风二段、风三段非常发育,在风一段局限于上段发育。文中所提到的白云岩是指碳酸盐端元的泥页岩,碳酸盐矿物以白云石为主,故也称云质泥页岩,包括白云质泥岩、白云质粉砂岩、凝灰质白云岩和泥质白云岩。根据白云石的聚集程度分为分散型、纹层型、条带—团块集合体型。
2.1 分散型白云石
泥岩中白云石主要分散在泥质基质中,砂岩中白云石主要分散在砂岩胶结物中(图2a),白云石大小与石英、长石等颗粒大小相当,可占全岩矿物含量的50%以上。分散型白云石大小不一,从泥晶白云石(<0.01 mm)到细晶白云石(0.1~0.25 mm)均存在,但单个样品的白云石大小往往较为一致,晶型以半自形为主,呈次菱角状(图2b)。细晶白云石晶型普遍较好,达自形态。分散状白云石富集部位,可见粉砂级长石和石英呈漂浮状分散在白云石基质中。不同晶体大小的分散状白云石阴极发光特征不同,泥晶级白云石晶体则呈暗红色发光,粒径略粗者可见环带。粉晶白云石(0.01~0.1 mm)的阴极发光具有分层现象,包含一个亮红色核、黑色内环和暗红色外环,代表粉晶白云石经过多期结晶而成,最后一期结晶使部分白云石呈自形。细晶白云石(>1 mm)不发光,或者部分仅含一个暗红色晶核,晶核大小约占细晶白云石的四分之一。
图2 准噶尔盆地玛湖凹陷风城组云质岩产状特征(a)均匀分布的白云石岩心,风4井,3 082.05 m;(b)均匀分布的白云石,单偏光,乌351井,3 304.10 m;(c)集合体状结构的白云石岩心,风城011井,3 861.10 m;(d)集合体状结构的白云石,单偏光,风4井,3 082.00 m;(e)不规则层状白云石岩心,风5井,3 476.60 m;(f)不规则层状白云石,正交偏光,风南4井,4 258.60 mFig.2 Occurrence characteristics of dolomitic rocks in the Fengcheng Formation of the Mahu Sag,Junggar Basin(a) uniformly distributed dolomite,core,well Feng4,3 082.05 m;(b) uniformly distributed dolomite,plane-polarized light,well Wu351,3 304.10 m;(c) dolomite with aggregate structure,core,well Fengcheng011,3 861.10 m;(d) dolomite with aggregate structure,plane-polarized light,well Feng4,3 082.00 m;(e) irregular stratified dolomite,core,well Feng5,3 476.60 m;(f) irregular stratified dolomite,cross-polarized light,well Fengnan4,4 258.60 m
2.2 纹层状白云石
富含纹层状白云石的样品亦富有机质和硅硼钠石,有机质主要以藻纹层的形式出现,硅硼钠石呈蝴蝶状、叶片状、花状等。纹层主要由富白云石层和富长石层组成,其中富白云石层中含有一定量的长石,含量少于白云石,而富长石以长石为主。纹层状白云石呈他形或者半自形,以粉晶状(20~80 µm)为主。与分散状白云石不同,纹层状白云石常常与相似大小的钾长石、钠长石混合在一起(图2e,f)。白云石既可以分散在藻纹层中,也可分散在非藻纹层中。硅硼钠石亦分散在纹层中,挤压藻纹层,却并不挤压白云石和长石纹层。说明硅硼钠石矿物生长过程中,直接交代了白云石和钠长石,将难溶的有机质推挤到硅硼钠石矿物前缘。
2.3 条带—团块集合体白云石
风城组白云石集合体的形状多样,以风城011井、风4井为例,包括不规则的三角锥、斑点、团块、虫孔、条带状、楔状、透镜状等(图2c,d)。富含白云石集合体的样品,亦可含有大量分散状白云石。集合体中白云石大小变化较大,从泥晶到细晶均存在,但整体较分散状和纹层状白云石晶体大,晶型好。在阴极光照射下,白云石集合体并非以纯白云石为主,含有大量基质物质,泥晶白云石和细粉晶白云石以暗红色为主,细晶白云石主体部分以黄绿色光为主,包含暗红色环带,黄绿色部分显示出极好的菱形晶。晶型更大的集合体白云石,除少数包含有较小的暗红色核外,大部分白云石不发光,说明集合体中细晶白云石的形成既可以在原始泥晶和粉晶白云石基础上重结晶形成,也可以直接结晶而成。
3 白云岩形成环境
3.1 碳氧同位素及锶同位素特征
氧同位素主要与其形成温度及水体性质有关,形成温度越高,氧同位素值越负,而碳同位素主要取决于水体盐度和碳元素的来源,盐度越高碳同位素值越正。此外,热液作用与大气水淋滤作用将导致白云岩中的氧同位素偏低[13]。研究区风城组白云岩δ13CPDB介于1.0‰~7.1‰,平均为4.33‰,δ18Odol总体负偏严重,介于-15.1‰~4.4‰,平均为-2.94‰。风城组白云岩岩石薄片中未见大气水淋滤的证据,因此深部热液作用应是造成氧同位素严重负偏的原因。而δ13CPDB同位素值整体偏正,说明形成环境中的水体盐度较高。研究区风城组白云岩中的δ13CPDB和δ18Odol值具有正相关性,表明白云岩受后期热流体交代作用影响较强(图3)。风一段—风三段,氧同位素先严重负偏,然后负偏程度减弱,碳同位素逐渐偏正再偏负,以风二段最高,表明流体温度和盐度升高再逐渐降低,在风二段热液活动最强烈。
图3 准噶尔盆地玛湖凹陷风城组白云岩类碳、氧同位素投点图Fig.3 Carbon and oxygen isotope drop map of dolomites in the Fengcheng Formation of the Mahu Sag,Junggar Basin
二叠纪全球碳酸盐的锶同位素87Sr/86Sr比值介于0.706 7~0.708 5,陆源输入通常使湖水的Sr 同位素比值增加,而幔源热液的输入可使湖水的87Sr/86Sr比值降低[14]。研究区白云岩类87Sr/86Sr 比值介于0.706 281~0.707 028(表1),明显低于二叠纪全球碳酸盐的Sr 同位素,证实了风城组沉积—成岩时期的流体来源受深部热液影响。
表1 准噶尔盆地玛湖凹陷风城组白云岩Sr同位素比值特征Table 1 Sr isotope ratio characteristics of dolomites in the Fengcheng Formation of the Mahu Sag,Junggar Basin
3.2 稀土元素及微量元素特征
稀土元素不易受白云岩化后成岩作用的改变,对于指示白云岩化流体来源效果较好。稀土元素分析结果显示,风城组ΣREE 为(1.46~270.62)×10-6,平均为80×10-6,LREE 为(0.88~192.30)×10-6,平均为56.02×10-6,HREE 为(0.45~83.78)×10-6,平均为14.64×10-6。风一段—风三段白云岩稀土配分均表现为左高右低的右倾型曲线,重稀土曲线平缓(图4),为轻稀土明显富集,重稀土相对亏损的配分模式特征,指示了不同时期相同流体在各地区呈脉动性喷流的特征,这在稀土元素含量的供给上也有不同程度的体现。
图4 准噶尔盆地玛湖凹陷风城组白云岩REE 球粒陨石配分模式图(a)风二段(P1f2);(b)风三段(P1f3)Fig.4 Rare earth element (REE) chondrite distribution model of dolomite in the Fengcheng Formation of the Mahu Sag,Junggar Basin
风城组无机地球化学特征也指示高盐度、强还原和受热液影响的典型碱湖地球化学特征。Y/Ho比值介于26~28指示为正常的陆源碎屑,而研究区65%以上的样品Y/Ho>28,指示海侵影响或沉积水体盐度与海水相当,符合碱湖高盐度的特征(图5a)。Eu负异常指示沉积环境缺氧,研究区风一段—风三段的稀土元素配分模式均表现为明显负Eu异常的“V”型曲线,代表沉积环境为还原环境。湖相沉积物的Ce表现为正异常,Ce/Ce*>1 代表碱性、碳酸盐丰富和缺氧的水体环境[15]。风城组超过65%的样品Ce/Ce*>1,表现出弱负异常的特点,主体处于碱性、碳酸盐丰富的缺氧环境中(图5b)。微量元素U、V、Ni等常用于评价水体的氧化还原环境,如U/Th>1.25、1.25>U/Th>0.75、U/Th<0.75分别指示缺氧环境、贫氧环境和氧化环境[13],研究区主要样品的U/Th>1.25、V/(V+Ni)>0.54、V/Cr>2,表明风城组沉积环境主体属于还原环境(图5c,d)。
图5 准噶尔盆地风城组微量元素与稀土元素沉积环境判别图Fig.5 Sedimentary environment discrimination map of trace elements and REEs in the Fengcheng Formation,Junggar Basin
3.3 流体包裹体特征
研究区风城组白云岩化热液流体具有中—高盐度、中—低温度、H2O-NaCl 体系,富含CH4气体特征。白云石矿物生长环带中富液相两相盐水包裹体和长愈合裂纹中富液相两相盐水包裹体的均一温度和盐度分析显示,风一段均一温度峰值区主要集中在80 ℃~90 ℃和90 ℃~100 ℃,风二段均一温度峰值区主要集中在90 ℃~100 ℃,风三段均一温度峰值区主要集中在70 ℃~80 ℃。风一段盐度范围为15.9~20.2wt.%NaCl,平均为17.4wt.%NaCl,风二段盐度范围为17.6~23.8wt.%NaCl,平均为20.8wt.%NaCl,风三段盐度范围为15.4~17.6wt.%NaCl,平均为16.2wt.%NaCl(图6)。从风一段到风三段流体盐度、温度呈现升高再降低的趋势,指示了热液活动强度和频率由弱变强,再变弱的趋势,这与白云岩累计厚度在纵向上呈现自风二段至风三段减薄的变化趋势相吻合。
图6 准噶尔盆地风城组白云石流体包裹体均一温度及盐度(wt.%NaCl)直方图(a)风一段(P1 f1);(b)风二段(P1 f2);(c)风三段(P1 f3);(d)盐度Fig.6 Histogram of homogenization temperature and salinity (wt.%NaCl) of dolomite fluid inclusions in the Fengcheng Formation,Junggar Basin
3.4 基于XRF分析的元素分布特征
利用手持XRF 对玛页1 井进行观察,采集200 396个元素数据,对研究区风城组垂向环境变化进行研究。锶钡比值常用来判断水体的咸度,大于1.0 是咸水,介于0.6~1.0 为半咸水,小于0.6 为微咸水[15]。玛页1 井风城组锶钡比值整体大于1.0,表明主要为咸水环境,其中风二段盐度最高(图7)。锶与(锶+铜)比值常用来判断水体所处气候环境,大于0.9为干热环境,玛页1井风城组锶与(锶+铜)比值整体大于0.9,主要为干热环境(图7)。钒/(钒+镍)比值常用来判断水体的氧化还原程度,大于0.84 为还原环境,介于0.54~0.84为半氧化环境,小于0.54为氧化环境,风城组主体为还原环境[13](图7)。整体上,风城组沉积环境为干热、还原的咸水环境。
图7 基于XRF 元素分析的玛页1 井沉积水体氧化还原特征Fig.7 Redox characteristic distribution of sedimentary water in well Maye1 based on X-ray fluorescence (XRF) element analysis
4 白云岩成因机理
根据白云岩产状、空间分布、碳氧同位素分析、微量元素分析、流体包裹体分析和XRF元素分析,热液—蒸发沉积和埋藏—热液交代是研究区风城组湖相白云岩形成的主要作用机制,白云岩集中分布于火山喷发或逆冲断裂活动形成的古地貌斜坡带与滨浅湖地带。
4.1 深部热液特征
与白云石伴生的硅硼钠石、碳酸钠钙石、碳酸氢石、碳钠镁石、氯碳钠镁石、霓石,丝硅镁石、淡钡钛石等特殊矿物等被证实主要是热液流体的产物[16-17](图8a~f)。如碳酸钠钙石人工合成实验显示其形成的温度不低于50 ℃[18],碳氢钠石溶解度较天然碱大,稳定温度介于69.5 ℃~191.5 ℃[19-20]。这些矿物在地表碱性蒸发盐湖环境中很难形成。
图8 准噶尔盆地玛湖凹陷风城组热液矿物特征(a)热液沿裂缝侵入,形成硅硼钠石、石英和白云石环带,电子探针背散射图像,玛页1井,4 737.64 m;(b)白云石及4期生长环带,亮色环带富Fe,暗色环带富Mg,电子探针背散射图像,玛页1井,4 832.43 m;(c)氯碳钠镁石,扫描电镜,玛页2井,4 155.30 m;(d)碳酸钠钙石(三级翠绿—三级蓝色干涉色),放射状霓石,正交偏光,克207井,4 853.46 m;(e)碳酸氢钠石,正交偏光,玛湖52井,5 282.00 m;(f)板柱状硅硼钠石(一级灰白—一级白干涉色),正交偏光,玛页1井,4 697.90 mFig.8 Hydrothermal mineral characteristics of the Fengcheng Formation in the Mahu Sag,Junggar Basin(a) hydrothermal intrusion along the fracture resulted in the formation of boronite,quartz and dolomite ring,backscattered electron image,well Maye1,4 737.64 m;(b) dolomite and four phase growth bands,bright bands rich in Fe,dark bands rich in Mg,backscattered electron image,well Maye1,4 832.43 m;(c) northupite,scanning electron microscopy (SEM),well Maye2,4 155.30 m;(d) Shortite with tertiary green to blue interference colors,Radial aegirine,cross-polarized light,well Ke207,4 853.46 m;(e) wegscheiderite,cross-polarized light,well Mahu52,5 282.00 m;(f) prismatic tabular reedmergnerite,first grade gray to white interference colors,cross-polarized light,well Maye1,4 697.90 m
从形成的矿物角度来看,侵入风城组的热液流体进入地层后,形成硅硼钠石、碳酸钠钙石、淡钡钛石、霓石等。热液流体富集硅、钠、钙、铁、镁、硼、碳酸根、碳酸氢根等离子,具有中—高盐度、中—低温,碱性—还原及深部来源特征[21],此外白云石的多期环带代表热液活动存在多期次性(图8b)。风城组热液中富含Mg2+离子,富Mg2+流体可能来自深部富Mg2+岩石(如基性—超基性岩浆岩、白云岩等)变质过程中脱水和溶解形成的流体,准噶尔盆地西北缘大地构造上处于板块缝合带,深大断裂发育,活跃的深大断裂可为热液流体活动提供运移通道(图8a)。
4.2 热液—蒸发沉积成因
风城组火成岩来源于上地幔岩浆,充分证明了该时期研究区发育的大断裂沟通地壳深部与上地幔。深部热液沿着断裂及裂缝上升并突破喷流口引起湖盆底部的热卤水沸腾爆炸,热液涌入湖盆,带来丰富的Mg2+、Fe2+、CO2和CH4气体[22-23],使得水中碳酸根和重碳酸根离子含量升高。早二叠世晚期,研究区气候由半干旱向干旱转变,蒸发作用由较强变为极强[15]。在干旱环境下,极强的蒸发作用和极少的淡水补给导致湖盆盐度偏高,形成较高Mg/Ca、较高pH值、高盐度的湖水,在高盐度的湖水中,潮坪相易发生白云岩化作用形成泥晶或粉晶白云石,由于白云岩化较彻底,推断交代的物质可能为高镁方解石,并与陆源供给的细粒碎屑混合形成泥质白云岩、白云质泥岩,与火山灰混合形成凝灰质白云岩、白云质凝灰岩等一系列纹层状白云岩类(图9)。此外热液的注入导致湖盆水体分层,湖盆底部高盐度的卤水为埋藏白云岩化提供了物质基础。热液注入还会使湖盆微生物活动更加强烈,这对白云石的饱和、沉淀具有催化作用,有利于克服离子间的活化能,促成了白云石的形成。
图9 准噶尔盆地玛湖凹陷风城组白云岩成因模式Fig.9 Genetic model of dolomite in the Fengcheng Formation of the Mahu Sag,Junggar Basin
总体而言,干旱的气候环境决定了蒸发作用强,湖盆高Mg/Ca、高PH值、高盐度的热卤水提供了云化作用的物质。潮坪相受蒸发作用影响最强,热液—蒸发沉积成因白云岩最发育。
4.3 埋藏—热液交代成因
湖盆中央泄水通道中的集合体状白云石、裂缝充填白云石以及均匀分布的白云石为保存较为完整的粗大晶体,常见明显的交代结构特征。当处于碱性、还原条件并伴随深盆热液的影响,硅酸盐类矿物并不稳定,易被碳酸盐类矿物交代。侵入风城组的热液能够大量溶解并萃取、、Cl-、F-和Ca2+、Mg2+、Fe2+等常量元素和络阴离子,这种热液沿断裂上升、侵入地层,提升了地层水中的Ca2+、Mg2+、Fe2+离子,在相对封闭的成岩体系中形成白云石环带或交代硅酸盐矿物形成一系列条带—团块的湖相热液交代白云岩(图9),此外热液的注入,导致湖盆水体分层,湖盆底部高Mg/Ca、高pH 值、高盐度的卤水随着沉积物的埋藏在孔隙中形成孔隙水,在成岩演化过程中,水的损耗,也将进一步提升Mg/Ca,为白云岩化提供物质基础。从乌尔禾地区风城组二段白云岩的平面分布来看,单井的白云岩比例介于0~32.5%,埋藏—热液交代成因白云岩多沿断裂及断裂两侧分布,也证实了这类白云岩的形成主要受断裂分布控制(图10)。研究区白云岩的分布特征无论是纵向上还是平面上,都表现为自深湖—半深湖向滨浅湖逐渐减薄的特点,显示埋藏—热液交代成因白云岩规模大于热液—蒸发沉积成因。
图10 准噶尔盆地乌尔禾地区风城组二段埋藏—热液交代成因白云岩平面分布Fig.10 The plane distribution of burial-hydrothermal metasomatic dolomite from the Second member of the Fengcheng Formation in the Wuerhe area,Junggar Basin
5 讨论
一般认为典型的热液白云石为鞍状白云石。鞍状白云石晶粒粗大,晶面呈弯曲刃状,见波状消光,多充填于裂隙,常见典型的“斑马状构造”。鞍状白云石形成于含Mg,温度大于80 ℃的热流体,由于快速结晶导致白云石晶体晶格大量缺陷并形成弯曲马鞍状晶面,被认为是热液作用的标志性矿物之一[24],如四川盆地中二叠统栖霞组、上震旦统灯影组的热液成因鞍状白云石[25-26]。鞍状白云岩整体具有“高Mn 低Sr、δ18O 偏负、87Sr/86Sr 偏正”的地球化学特征[27],鞍状白云石的δ18O 可在-2.5‰到-18‰之间变化,但大部分介于-5‰~-12‰,相对比较负的δ18O值主要与氧同位素的热分馏有关。碳同位素值变化范围比较大,介于-17‰~6‰,但大部分介于-3‰~5‰[28]。
虽然鞍状白云石被认为是热液成因的关键性标志,但非鞍状白云石并非一定不是热液成因或与热液无关[25,29],需要综合考虑白云岩的产状、含量和矿物共生组合以及地质背景等因素。玛湖凹陷风城组湖相白云岩中白云石晶体呈典型的菱面体状,显示结晶速度相对较慢,结晶程度相对较好的特征。热液—蒸发白云岩沉积成因模式中湖泊水体与深部热液混合[30],一方面热液为白云岩的形成提供了必要的物质,特别是Mg2+离子,另一方面使得湖泊水体盐度进一步增大,在潮坪蒸发环境中形成高镁方解石,并进一步白云岩化。这种成因的白云岩受沉积相带控制,主要发育在湖盆边缘。埋藏—热液交代成因白云岩中,热液除带来丰富的Mg2+离子外,热液的高温打破了白云石形成的动力学障碍。间断性的高温热液在侵入过程中,孔隙水中Mg2+升高。随着流体降温,白云石沉淀结晶或改造原始白云石形成环带,暗色环带富Mg、Mn,亮色环带贫Mg、富Fe,热液流体中Mg、Mn 和Fe 元素含量的周期性变化在白云石晶体的生长环带中得到直接响应。由于受热液流体影响程度不一,这类白云石δ18O 值变化范围相对较大,埋藏—热液交代成因白云岩的形成与深大断裂密切相关。
6 结论
(1)玛湖凹陷风城组白云岩主要发育在风城组二段和三段,平面上主要集中在深湖—半深湖相区,向着滨浅湖略有减薄,以分散型、纹层型、条带—团块集合体型产出。
(2)白云石形成于高盐度、强还原和受热液控制的典型碱湖环境,深部热液侵入为湖盆提供了丰富的Mg、Fe等离子,为白云岩的形成提供了物质基础。
(3)湖相热液白云岩存在两种成因:一是热液—蒸发沉积成因,在干旱气候环境和强蒸发作用及热液侵入下,湖盆高Mg/Ca、高pH 值、高盐度的水体为云化作用提供了介质,形成不规则纹层状白云岩类。二是埋藏—热液交代成因,深部热流沿断裂上升侵入地层,促进埋藏白云岩化,形成集合体状、均匀分布、裂缝充填状的白云石。