中青年Pauwels Ⅲ型股骨颈骨折治疗的研究进展
2023-12-30曹东东谢梦琦
韩 哲,曹东东,2,孙 翔,韩 超,谢梦琦,董 强
股骨颈骨折(femoral neck fracture,FNF)是各个年龄段常见的髋部骨折类型之一,据统计全球每年髋部骨折发生数量超过170 万,其中FNF 约占60%[1-2]。损伤机制方面,老年FNF 多为低能量损伤所致,如摔倒;相反,中青年FNF 损伤多为高能量损伤所致,如交通伤,高坠伤等。对于老年FNF 患者,由于其手术耐受较差和骨折愈合率较低,多数学者推荐使用髋关节置换[3]。然而对于中青年FNF 患者,由于其为高能量损伤所致(如交通伤和高坠伤),骨折断端情况更为复杂,亦可能存在血管损伤,然而考虑到该类患者更好的骨折愈合能力、更长的预期寿命、对髋关节功能更高的需求和假体的使用寿命等诸多因素,一般首先使用内固定方式进行治疗[4-5]。Pauwels 分型用于判断FNF 的生物力学特点,其对FNF 的内固定治疗选择和术后并发症发生率的预测具有重要的指导意义[6]。据文献报道,Pauwels Ⅲ型FNF 内固定术后并发症发生率高达45%,其中23%的患者发生骨折不愈合,12%的患者发生股骨头坏死,15%的患者发生畸形愈合,并且32%的患者术后还需进行髋关节重建手术[7]。因此,中青年Pauwels Ⅲ型FNF 内固定治疗方式的选择一直是骨科学界研究的热点与难点。本文将从Pauwels III 分型研究进展和不同内固定治疗的优势与不足出发,从两个方面对Pauwels Ⅲ型FNF 的内固定治疗现状进行综述,旨在为临床对该类骨折的治疗选择提供参考。
1 Pauwels 分型的临床意义及研究进展
目前,FNF 具有多种不同的分型方式,因为其机制不同,临床应用也各有差异。Garden 分型用于判断骨折的移位程度,将其分为4 型,目前临床上应用极为广泛。但相关研究发现Garden 分型的可重复性较差,故临床上多简化为二分类:移位型和非移位型[8-9]。解剖分型通常用于推测患者预后,当骨折线愈靠近股骨头,表明骨折对股骨头血供破坏程度也愈严重,故相较于基底型和经颈型,头下型FNF 术后并发症发生率较高。AO 分型方法较为复杂,目的为便于研究者进行统一和分类,其临床意义十分有限,常常用于科学研究中[10]。
1.1 Pauwels 分型的定义及意义 Pauwels 分型是首个用于判断FNF 骨折断端生物力学特点的分型,由1935 年德国医师Pauwels 提出,根据骨折远端骨折线与水平线的夹角进行分类:Ⅰ型外展型(Pauwels 角<30°):骨折相对属于稳定型断裂,此时骨折端主要为应压力,但如果不及时处理,极易造成位移。Ⅱ型中间型(Pauwels 角在30°~50°之间):外展型和内收型之间,此时骨折断端出现剪切力,可能会对骨折愈合产生不利影响。Ⅲ型内收型(Pauwels 角>50°):角度越大,骨折端的接触面积越小,纵向剪切应力越大,断裂越复杂,骨不连、股骨头缺血性坏死等术后并发症发生率越高,属于不稳定骨折[11]。Pauwels 分类可以直观地描述断裂线的角度、稳定性和骨折断端生物力学特性,为预测手术后内固定的稳定性提供一定的参考。从分型稳定性来看,I 型最稳定,II 型相对稳定,Ⅲ型最不稳定;稳定性越差,剪切力越大,内固定术后发生内固定失效、骨折不愈合或股骨头坏死的可能性越大。因此,Pauwels 分型判断FNF 的生物力学特点和预测内固定术后并发症发生率相较于其他分型方式具有一定的优势。
1.2 Pauwels 分型的改进 然而部分学者对传统Pauwels 角测量结果的准确性存在质疑,原因为多数FNF 患者伴有下肢短缩、旋转等畸形,拍摄X线片时,骨折线会随患者大腿体位的内收、外展而发生变化,而传统水平线固定不变,从而导致Pauwels 角测量结果出现误差[12]。Kumbaraci 等[12]研究建议采用骨折复位再进行Pauwels 分型,可以一定程度上降低体位变化造成的测量误差,但是仍然存在体位变化造成测量误差的可能性。为解决体位变化对Pauwels 角测量的影响,学者们对传统测量方法进行改进,Wang 等[13]将股骨干纵轴线为标准线,经过股骨头上方与之作垂线,此时垂线相当于传统测量时水平线,骨折线与这条垂线的夹角则被定义为新的Pauwels 角。这种改良后的Pauwels 角测量方法避免了传统方法因患者体位差异和医师主观因素而导致的误差,更有利于预测患者的预后。但是改良后Pauwels 分型也存在一些争议,正常情况下,股骨解剖轴与机械轴有6°~7°的偏差,而股骨机械轴与重力轴有大约3°的偏差,因此假想的水平线与股骨解剖轴垂直会导致比实际水平轴高9°~10°,这亦可能会在成测量误差[14]。精确及可重复性高的Pauwels 角测量方式一直是学者们研究的目标之一,但就目前而言仍需要进一步的探究。
2 Pauwels Ⅲ型FNF 的内固定治疗策略
随着FNF 内固定植入物及治疗技术的不断发展,近年来内固定治疗方式也越来越多,如空心加压螺钉内固定(cannulated compression screws,CCS)、动力髋螺钉(dynamic hip screw,DHS)、内侧支撑钢板(medial buttress plate,MBP)联合CCS、股骨近端防旋髓内钉(proximal femoral nail anti -rotation,PFNA)、股骨颈内固定系统(femoral neck system,FNS)等。虽然目前临床内固定植入物类型较多,但其目的均是在解剖复位的基础上提供坚强的内固定[15-17]。此外,在固定Pauwels Ⅲ型FNF 骨折时,不仅需要内固定物提供足够的机械稳定,同样需要其能够承受一定的抗剪切力、抗压缩力和张力,避免在骨折愈合前出现内固定物的疲劳断裂或退钉等情况。
2.1 CCS CCS 一般遵循滑动加压理论,通过负重后渐进滑动压缩机制,使骨折断端产生动态轴向压应力利于骨折愈合,是FNF 骨折中最常用的内固定治疗方式之一。并且其具有操作简单、可经皮植入创伤小、对股骨头血运影响较小、手术时间短和整体费用较低等优势亦得到临床医生的广泛认可[18]。既往Pauwels Ⅲ型FNF 也多以三枚倒三角构型的空心螺钉固定,但是临床研究发现三枚CCS 治疗后,颈干角丢失、股骨颈短缩和内固定失效等并发症发生率较高,原因为其固定强度较低、无法提供角稳定性,故难以抗衡Pauwels Ⅲ型FNF 骨折断端巨大的剪切力,进而出现内固定失败[4]。目前研究多从改变螺钉直径、数量、螺纹类型和固定构型等方面入手以提供更好的固定强度,降低CCS 治疗Pauwels Ⅲ型FNF 的失败率[19-20]。如Filipov 等[19]提出“F”构型CCS 技术,不同于传统平行螺钉固定,“F”构型空心螺钉使用双平面支撑螺钉固定,其最远端1 枚螺钉与股骨干轴线角度较大(150°~165°),方向为前下到后上,支撑股骨颈后侧皮质,其余2 枚分别用于固定股骨颈的张力侧和压力侧。部分生物力学研究显示,“F”构型可以明显提升抗旋转及抗剪切力性能,进而一定程度上提升固定强度[21];但由于空心钉在股骨颈内互不平行,削弱了CCS 的滑动加压作用,并且部分研究发现也仅限于生物力学具有优势,其临床疗效仍需要更多的循证医学证据佐证。
2.2 DHS DHS 也是临床中治疗Pauwels Ⅲ型FNF 的常用方法,是一种髓外钢板装置,由带套筒的钢板和一枚滑动螺钉组成,其通过滑动螺钉使骨折断端紧密接触,并且股骨外侧钢板可维持固定颈干角,提供角稳定性,可以很好地对抗Pauwels 角过大引起的高剪切力。但是多数研究表明,单纯使用DHS 抗旋转能力较弱,通常需联合一枚抗旋转滑动螺钉(derotational screws,DS)增加其抗旋转性能[22-23]。Ma 等[24]基于有限元分析3 枚倒三角CCS、DHS 和DHS+DS 三种内固定模型的生物力学性能,结果表明DHS+DS 表现出最优的生物力学稳定性,且该研究推荐使用DHS+DS 作为治疗Pauwels Ⅲ型FNF的首选方法。Samsami 等[25]的有限元研究表明DHS+DS 在术后早期可以提供更适合骨折愈合的生物力学环境,进而缩短骨折愈合时间。因此仅从生物力学稳定性方面考虑,DHS 内固定系统可以提供中青年Pauwels Ⅲ型FNF 坚强的内固定,但是DHS 力臂较长,手术时间长,应力较为集中,会导致术后髋内翻,股骨头切割甚至是钉板断裂等风险[26]。
2.3 MBP 联合CCS MBP 联合CCS 是近年来国内新兴的内固定方式之一,即在3 枚CCS 固定的基础上增加MBP 的支撑作用,从而最大程度抵抗骨折断端的剪切力。生物力学研究发现MBP 联合3 枚CCS 具有优秀的抗滑、抗旋转及滑动加压等性能,并且能将骨折断端的剪切力转变为促进骨折愈合的应压力。对于Pauwels Ⅲ型FNF 患者来说,内固定关键性能为对抗较大的剪切力的能力,因此,MBP 在治疗该类患者时具有突出的生物力学优势。陈翔等[27]的一项Meta 分析显示相较于仅使用3 枚CCS,MBP 联合3 枚CCS 治疗Pauwels Ⅲ型FNF 患者会缩短骨折愈合时间,降低术后并发症发生率以及提高术后髋关节功能。并且Ye 等[28]的研究表明在短期随访内,MBP 联合3 枚CCS 相较于3 枚CCS可以显著提高Pauwels Ⅲ型FNF 的愈合率。因此3枚CCS 联合MBP 可以通过解剖复位和稳固的内固定使Pauwels Ⅲ型FNF 获得很高的临床疗效,但是也应该注意到该类手术切口较大、手术时间较长、手术花费较高,并且需警惕股骨头血供的损伤[11]。
2.4 PFNA PFNA 提供较长的髓内支撑,具有应力分担的特点,符合股骨的生物力学,能将骨折端剪切力传递并分散给股骨干皮质骨,在对抗剪切力、抗旋转、抗结构性位移方面具有一定优势。Zeng 等[29]有限元研究显示,PFNA 相较于DHS 和CCS 在降低内固定失败风险方面具有更佳的生物力学性能。但是PFNA 会干扰髓腔、增加隐形失血量,并且髓内固定系统多用于转子间骨折。2011 年OA 官网将PFNA 手术指征中的股骨颈基底部骨折剔除,目前PFNA 手术适应证中并无FNF 骨折,临床上多用于股骨转子间骨折[30]。
2.5 FNS 最新开发的FNS 是由动力棒、抗旋转螺钉及接骨板组成,其稳定性归因于由动力棒和接骨板提供的角稳定性和抗旋转螺钉提供的抗旋转稳定性,其设计旨在结合现有不同内固定方式的优点,具有内固定期间结合压缩和抗旋转质量的理论机械优势[31]。相关临床研究亦同样证明FNS 对不稳定性FNF 具有良好的临床疗效和生物力学稳定性[31-32]。Wu 等[33]的荟萃分析结果表明与3 枚CCS 相比,FNS可以降低FNF 术后股骨颈短缩、延迟愈合或不愈合的几率,并且FNS 可以加速FNF 愈合并改善髋关节功能。Davidson 等[34]研究分析102 例FNS 治疗FNF 的临床结局,结果表明FNS 是一种安全的治疗选择。Lin 等[35]纳入56 例Pauwels Ⅲ型FNF(FNS 27例,4 枚CCS 29 例),比较2 种不同治疗方式的临床疗效,结果指出FNS 术后股骨颈短缩、骨折不愈合、股骨头坏死或内固定失效等并发症发生率低于CCS,且FNS 组末次随访时Harris 评分亦优于4 枚CCS。此外,FNS 是一种相对微创的手术,理论上可以减少术后失血和感染的风险,且对股骨头血运影响较小,但是FNS 作为一种新开发的内固定方式,其远期疗效亦需要进一步研究。
3 总结
综上所述,中青年Pauwels Ⅲ型FNF 的治疗仍然是骨科创伤领域的一个挑战,该类患者内固定的治疗要点为精确的解剖复位和坚强的内固定。同时,对于中青年Pauwels Ⅲ型FNF 的治疗应深入了解骨折断端生物力学状态,进行精确的骨折分型,有针对性地选择恰当的复位策略和手术方案,以便保证精确的解剖复位和坚强的内固定,从而减少该类骨折内固定治疗术后的并发症并改善患者预后。