APP下载

矩阵之和Drazin逆的表示及其应用

2023-12-14杨晓英

摘 要:通過将矩阵之和转化为矩阵之积的思想,利用矩阵Drazin逆的定义、性质,将和矩阵Drazin逆问题转化为三角分块矩阵的Drazin逆问题, 给出了在一定条件下和矩阵Drazin逆新的表示,进而给出分块矩阵在更弱条件下Drazin逆的表示,最后通过算例来验证结果的科学性。

关键词:矩阵和;Drazin逆;三角矩阵;分块矩阵

中图分类号:O151.21

文献标志码:A

经济管理类中的数据处理和最优化、网络安全最终都转化成线性方程组的求解问题,那么如何求解线性方程组的解成为解决很多现实问题的关键。而线性方程组的系数矩阵是方阵还是长方阵,如果是方阵,是否可逆常常是我们关注的问题。为了解决这一问题,1920年, Moore[1]在美国数学会上首先提出了广义逆矩阵的概念;1955年, Penrose[2]发表了和文[1]等价的广义逆矩阵理论文章;同年,Rao[3]提出了更一般的广义逆矩阵的概念;1958年,Drazin[4]在结合环和半群中引入了伪逆的概念,后来人们称之为Drazin逆。当一个方程组的系数矩阵不是方阵或者不可逆的时候,矩阵的Drazin逆为求解线性方程组的问题提供了更广阔的思路。本文将讨论两个矩阵之和的Drazin逆问题,为解决以上问题提供理论依据。

关于矩阵之和及分块矩阵Drazin逆的表示,自2003年以来,学者们应用多种方法给出了在特定条件下Drazin逆的不同表示,参见文献[5-17]。其中, 邓春元[14]讨论了反三角块矩阵的Drazin逆表示;刘喜富等[12]给出两个矩阵差的Drazin逆表示;白淑艳[16]给出了体上两个矩阵之和Drazin逆的表示。本文利用与以上文献不同的矩阵分解方法和三角矩阵的Drazin逆给出在新的条件P2Q+PQ2=0, P3Q=0和PQ3=0下两矩阵之和Drazin逆的表示,再由所得定理结果给出一个更简单的推论,并通过不同的分解方法给出和已有文献[16]在相同条件P2QP=0,P3Q=0,Q2=0下的矩阵之和Drazin逆的表示,进而应用这个结论给出分块矩阵Drazin逆新的表示,所得条件比已有文献条件更弱,最后通过一个数值例子来验证结论的正确性。

参考文献:

MOORE E H. On the reciprocal of the general algebraic matrix[J]. Bulletin of the American Mathematical Society, 1920, 26: 394-395.

[2] PENROSE R. A generalized inverse for matrices[J]. Proceedings of the Cambridge Philosophical Society, 1955, 51: 406-413.

[3] RAO C R. Analysis of dispersion for multiply classified data with unequal numbers in cells[J].Sankhyd, 1955, 15: 253-280.

[4] DRAZIN M P. Pseudo inverses in associative rings and semigroups[J].The American Mathemat-ical Monthly, 1958, 65: 506-514.

[5] BEB-ISRAEL A, GREVILLE T N E.Generalized inverses: theory and applications[M]. 2nd ed.New York: Springer, 2003.

[6] HARTWIG R E, WANG G R, WEI Y M. Some additive results on Drazin inverse[J]. Linear Algebra and its Applications, 2001, 322: 207-217.

[7] MARTLNEZ-SERRANO M F, CASTRO-GONZALEZ N. On the Drazin inverse of block matrices and generalized Schur complement[J]. Applied Mathematics and Computation, 2009, 215(7): 2733-2740.

[8] BU C J, FENG C C, BAI S Y. Representations for the Drazin inverse of the sum of two matrices and some block matrices[J]. Applied Mathematics and Computation, 2012, 218(7): 10226-10237.

[9] MIAO J. Results of the Drazin inverse of block matrices[J]. Shanghai Normal University, 1989, 18: 25-31.

[10]DENG C Y, WEI Y M. Characterizations and representations of the Drazin inverse involving idempotents[J].Linear Algebra and its Applications, 2009, 431(9): 1526-1538.

[11]CASTRO-GONZALEZ N, MARTLNEZ-SERRANO M F. Expressions for the g-Drazin inverse of additive perturbed elements in a banach algebra[J].Linear Algebra and its Applications, 2010, 432(8): 1885-1895.

[12]LIU X F, XU L, YU Y M. The representations of the Drazin inverse of differences of two matrices[J]. Applied Mathematics and Computation, 2010, 216: 3652-3661.

[13]WEI Y M. Expressions for the Drazin inverse of a 2×2 block matrix[J]. Linear & Multilinear Algebra, 1998, 45: 131-146.

[14]DENG C Y. Generalized Drazin inverse of anti-triangular block matrices[J]. Journal of Mathematical Analysis and Applications, 2010, 368: 1-8.

[15]MEYER C D, ROSE N J. The index and the Drazin inverse of block triangular matrices[J]. SIAM Journal on Applied Mathematics,1977, 33: 1-7.

[16]白淑艷. 体上两个矩阵和的Drazin逆表达式及其应用[D]. 哈尔滨:哈尔滨工程大学, 2012.

[17]杨晓英. 分块矩阵Drazin逆的新表示[J]. 贵州师范大学学报(自然科学版), 2021,6:20-22,44.

(责任编辑:曾 晶)

The Representations for the Drazin Inverse of the

Sum of Matrices and Its Application

YANG Xiaoying*

(College of Humanities, Sichuan Information Technology College, Guangyuan 628017, China)

Abstract:

Through the idea of transforming the sum of matrices into the product of matrices, and using the definition and properties of the Drazin inverse of matrix, the problem of the Drazin inverse of the sum of matrices is transformed into the problem of the Drazin inverse of triangular block matrix, and a new representation for the Drazin inverse of the sum of two matrices under certain conditions is given. Then an expression for the Drazin inverse of the block matrix under weaker conditions is given, and finally the scientificity of the result is verified by an example.

Key words:

sum of matrices; Drazin inverse; triangular matrices; block matrix