湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义
2023-11-22陈澍民徐宏根吴金虹缪宇曾昊彭勃潘思远
陈澍民 ,徐宏根 ,吴金虹 ,缪宇 ,曾昊 ,彭勃 ,潘思远
(1. 中国地质调查局长沙自然资源综合调查中心,湖南 长沙 410600;2. 中国地质大学地球科学与资源学院,北京 100083;3. 中国地质调查局昆明自然资源综合调查中心,云南 昆明 650100;4. 中国地质科学院矿产资源研究所,北京 100037)
雪峰弧形构造带(下称雪峰带)属于江南造山带(王孝磊等,2017)中西段(图1),以蕴藏丰富的金-锑资源而著名(Xu et al.,2017;Zhang et al.,2019)。前人以矿床地质特征、构造演化、物质来源、成矿时代为牵引,对该成矿带上典型矿床进行了广泛研究(Xu et al.,2017;Zhang et al.,2019;黄建中等,2020)。新近研究逐渐揭示构造—岩浆作用与成矿的耦合关系,表现为以下几个方面:①雪峰带部分典型矿床如古台山金锑矿、杏枫山金钨矿、玉横堂金锑矿距离岩体空间距离3~5 km,为岩浆热液成因(Li et al.,2018;Feng et al.,2020;Xiao et al.,2020;王川等,2021)。②雪峰带整体岩浆活动不强,带上金—锑矿床普遍距离岩体从几十到上百公里不等,但多数金(锑)矿床成因类型仍有争议,研究将部分矿床如茶溪金矿确定为广义的造山型(Chen et al.,2022),成矿物质和流体与岩浆活动高度相关。③位于雪峰带北东段的安化地区矿床(区)内存在大量脉岩,表现出与金-锑成矿具有密切的空间关系甚至即为成矿地质体,如符竹溪金锑矿、廖家坪锑矿、锡矿山锑矿、板溪锑矿等矿床(刘继顺,1996),这种特征与西秦岭地区较为相似(柯昌辉等,2020)。针对脉岩的已有研究观点不一,如认为与成矿同为深部来源(刘继顺,1996)、成矿流体受岩浆混合或受岩浆热源驱动(Goldfarb et al.,2001;赵军红等,2005;Deng et al.,2015)、与锑成矿无关(李智明,1993)等不同特征,这些脉岩与金(锑)矿化关系密切,对其成因研究有助于探究岩浆—构造—金(锑)成矿耦合过程。
图1 大地构造位置图(a)(Chen et al.,1998)及雪峰弧形构造带地质简图(b)(权正钰等,1997)Fig. 1 (a) Simplified map of South China and (b) Geological sketch map of Xuefeng arcuate tectonic zone, Hunan
安化一带近年的勘查工作共探明金金属量为333 kg(曾昊等,2020),在天明金矿区新探明金矿脉3条,同时被岩心揭露的还有位于蚀变带下盘的云斜煌斑岩,为进一步探索构造—岩浆—成矿耦合关系提供了良好素材。笔者通过岩石学、锆石U—Pb同位素、同位素地球化学,研究云斜煌斑岩形成时代及岩石成因,对比各类脉岩与区域赋矿地层、矿区围岩、地壳等地质体Au、Sb含量,探讨脉岩与成矿的关系,为华南板块壳幔演化提供新资料,为天明金矿区的进一步勘查提供方向。
1 区域地质背景
雪峰带整体呈NW向凸出的弧形,从通道县近NE走向延伸至桃江县(Zhao,2015)(图1)。与江南造山带东段截然分明的构造线不同,雪峰带与扬子、华夏地块呈构造过渡关系,并无截然分明的断裂构造边界(张岳桥等,2006;任纪舜等,2016),其南东部大致以新化—城步断裂与湘中盆地为界,北西部大致以沅陵—怀化—新晃与沅陵—麻城盆地为界。
雪峰带地层以武陵及雪峰运动形成并改造的新元古代浅变质火山碎屑—沉积岩为主要特征(Zhang et al.,2013;任纪舜等,2016)。从老到新划分为青白口系冷家溪群、板溪群,南华系长安组、富禄组、大塘坡组、南沱组,震旦系陡山沱组/金家洞组、留茶坡组/灯影组。区内金-锑矿主要赋存于冷家溪群、板溪群及长安组(旧称江口组)。
雪峰带是多期构造叠加带(舒良树,2012),金—锑矿严格受地壳—区域—矿床三级尺度构造控制,NE—NNE向深大断裂作为区域性断裂,一般是导矿构造,NW—NWW—近ES向低序次断裂一般是容矿构造,且普遍是同一构造体系下的张扭性结构面重新活化、叠加的追踪结构(柏道远等,2012,2014,2017;文志林等,2016)。
雪峰带岩体以南东界一线规模较大,如沩山、白马山等花岗岩体,成岩时代横跨加里东期、印支期、燕山期(陈卫锋等,2007;王川等,2021)。带内岩体规模相对较小,有大神山、中华山、桃江、岩坝桥等,时代以印支期为主,次为加里东期。除白马山岩体外围古台山、杏枫山金—锑矿床以外,其余矿床均距离岩体较远,从几十至上百公里不等。安化—桃江地区多分布酸性—基性岩脉,如马迹塘、符竹溪、黄材、锡矿山等,时代主要为印支期—燕山期。
2 天明金矿区地质特征
天明金矿区勘查工作新探明石英脉型金矿脉3条,见矿标高为—200 ~0 m,金品位为0.14~13.85 g/t。矿区地层从老到新划分为冷家溪群小木坪组、板溪群马底驿组、五强溪组(图2a)。小木坪组主要岩性为浅灰—灰紫—砖红色变质砂岩、变质砂砾岩、砂质板岩;马底驿组为青灰—紫红色中薄层绢云板岩与粉砂质板岩互层。马底驿组底部主要为灰黑色粉砂质板岩,下部灰绿色、紫红色粉砂质—绢云板岩互层,常见蚀变褪色化板岩,上部灰绿—紫红色砂质—粉砂质绢云板岩互层,粉砂—粗砂质成分交替形成纹层、条带。五强溪组为厚层浅变质中粗粒石英砂岩夹灰绿色砂质板岩、硅质板岩和纹层状浅变质细砂岩。矿区地层产状走向近EW,倾向S~SSE,局部偶因褶皱倾向NNW,倾角较陡;金锑赋存于马底驿组中。
图2 湖南天明金矿区地质简图(a)及3号勘探线图(b)Fig. 2 (a) Geological sketch map of the Tianming gold deposit and (b) No.3 geological cross—section
矿区构造上位于符竹溪区域性EW向断裂与NE向逆冲断裂交汇地带,处竹叶山复式区域性向斜北翼,局部常见轴向近EW的小型复式褶皱;竹叶山复式向斜轴向近EW,倾向不明,核部为五强溪组,两翼为马底驿组,区域上如符竹溪、竹田等金锑矿床(点)产出于向斜北翼。区域内断裂发育,符竹溪(F1断层)(图2a)及赤溪两条近EW、SEE向区域性逆冲断裂横贯矿区,南北侧发育强劈理化带及不同序次、不同走向的次级断裂(如F2、F3断层)(图2a)。F1断层是近EW向贯穿矿区的主断裂,上盘岩层受牵引作用破碎较为强烈,具逆冲推覆特征,倾向S/SSW,局部倾向SSE,倾角为41°~70°,延伸~11 km。断裂主要穿过冷家溪群小木坪组和板溪群马底驿组,局部被第四系掩盖。受该断裂影响,周边次级断裂发育,两侧近百米范围内劈理化强烈。F2断层为一次级逆断层,走向NW,倾向SW,倾角为65°~80°,上下盘均为马底驿组灰绿—紫红色板岩,延伸约200 m,断裂周边具弱矿化蚀变。F3断层为一逆断层,规模较小,走向近EW,倾向NNE,倾角为70°~80°,影响范围小于100 m;近EW向断裂是区内最晚期容矿断裂构造,3条金矿脉均受该序次断裂控制。F4、F5、F9断层为近SN/NNE/NNW向断裂,倾向W,倾角为54°~85°,延伸100~900 m不等,受最晚期近EW向断裂错断,错距从5~50 m不等。矿脉产出于近EW走向剪切带中,剪切带伴随破碎、褪色蚀变,但无明显断层面;延伸约250~400 m,西侧尖灭,东侧延伸暂未探明,倾向为140°~190°,倾角为35°~80°,厚度为0.72~4.62 m,与马底驿组板岩呈小角度斜切关系(图2b)。钻探揭露4处隐伏云斜煌斑岩,岩脉产状与蚀变带接近,厚度约为2~5 m不等,走向分别有NNW和NWW,延伸长度不明(图2b)。
3 岩石学特征
分别在ZK301、ZK302岩心中采集8件样品(图2b、图3a),均蚀变强烈,整体呈灰白色,局部浅肉红色,块状构造,细粒斑状结构,深绿-灰黑色细小斑状矿物斜长石、云母均匀分布,粒径为0.5~1.5 mm,受次生作用影响矿物不清晰,云母颗粒相对容易辨识(图3b)。镜下观察(图3c、图3d),成分主要为斜长石(60%~70%)、黑云母(20%~30%)、正长石(5%~8%)、石英(2%~5%);其中斜长石为更-中长石,半自形板状、板粒状,均被碳酸盐集合体交代,有少量残留,大都仅保留其外形轮廓,呈交代残余假象结构,粒径为0.2~0.8 mm,彼此或与正长石镶嵌成粒状集合体分布;黑云母呈半自形片状,因遭受应力而弯曲变形,均被碳酸盐、葡萄石等混晶集合体替代,并析出铁质,无残留,仅保留其外形轮廓,呈交代假象结构,粒径为0.2~1.0 mm,较均匀分布;正长石呈半自形-他形板粒状,颗粒晶面弱泥化和不同程度碳酸盐化,不显双晶,粒径为0.1~0.4 mm,较均匀分布在斜长石颗粒之间;石英呈他形粒状,无色透明,粒径为0.1~0.2 mm,零散状分布在长石颗粒之间;可见岩石因构造作用产生的空隙和裂隙,均被粒状碳酸盐集合体呈团块状或细脉状充填,副矿物有磷灰石和磁铁矿。样品所含斜长石居多,次为云母,而未见明显角闪石,地球化学元素含量与锡矿山云斜煌斑岩相似(吴良士等,2000),定名云斜煌斑岩。
图3 湖南天明金矿区云斜煌斑岩岩心及透射光镜下照片Fig. 3 Core and transmission light microscopic photographs of mica—plogioclase lamprophyre of Tianming gold deposit, Hunan
4 测试方法
全岩测试粉末制备及锆石单矿物分选均在廊坊市宇能岩石矿物分选技术服务有限公司完成,锆石靶制作过程参考(Compston et al.,1992)。实验测试在中国地质调查局天津地质调查中心实验室完成。
锆石U—Pb同位素测试前拍摄透射光、反射光、阴极发光图(CL)用以排除裂纹和抛光面不清晰的锆石,结合锆石内部结构选择合适的激光测试点位;使用仪器RESOlution LR型号激光剥蚀进样系统及Agilent 7900型号电感耦合等离子体质谱仪进行测试。能量密度为3 J/cm2,激光剥蚀束斑直径为29 um,频率为7Hz,采用锆石标样91500和NIST SRM 610作外标,Plešovice为监控标样。采用ICPMSDataCal软件处理数据,使用Glitter 4.4软件及IsoplotR制图及计算加权平均值(Ludwig,1992;Liu et al.,2010;Vermeesch,2018;李艳广等,2023)。
全岩主、微量元素地球化学采用四酸消解、等离子质谱综合分析(ICP—MS),精度优于5%。使用仪器PW4400/40型号X射线荧光光谱仪、X SeriesII型号电感耦合等离子体质谱仪、WP1型号一米光栅摄谱仪;环境温度20°C,湿度40%。测试方法及规范参照GB/T 14506.28-2010《硅酸盐岩石化学分析方法第28部分:16个主次成分量测定》及《硅酸盐岩石化学分析方法第30部分:44个元素量测定》(GB/T 14506.30-2010)。
Sr—Nd同位素测试使用Thermo Electron公司的Triton型热电离质谱仪(TIMS)测定Sr和Nd同位素比值;使用参数88Sr/86Sr=8.375 209,146Nd/144Nd=0.721 9进行质量分馏校正;使用标样SRM987数据87Sr/86Sr=0.710 247±0.000 008(2se,下同)和Jndi-1数据143Nd/144Nd=0.512 115±0.000 006质量监测;玄武岩标样BCR-2数据87Sr/86Sr=0.705 022±0.000 014,143Nd/144Nd=0.512 651±0.000 006监测分离流程。样品制备过程参考(Creaser et al.,1997;Unterschutz et al.,2002),测试方法参考(Schmidberger et al.,2007;Liu et al.,2020),元素校准参考(Wasserburg et al.,1981)。
5 结果
5.1 锆石U—Pb同位素
样品所含锆石较小,粒径为25~110 µm;多为半自形—他形粒状,少数为短柱状;部分锆石具有不规则断口,无明显环带;部分锆石可见清晰的振荡环带、板状环带。通过透射、背散射及CL图排除内部破裂严重的锆石后,挑选58个晶型及内部结构完整的锆石进行点分析,有36组数据谐和度>90%,206Pb/238U年龄为104~2 607 Ma,分别簇集于414~429 Ma、2 414~2 511 Ma两组区间(图4,表1)。
表1 湖南天明金矿区云斜煌斑岩锆石U—Pb同位素数据表Tab. 1 Zircon U—Pb isotopic datas of the mica—plogioclase lamprophyre in Tianming gold deposit, Hunan
图4 湖南天明金矿区云斜煌斑岩锆石阴极发光(CL)图(a)、加权平均图(b)与谐和图(c)Fig. 4 (a) Zircon cathodoluminescence (CL) image, (b) weighted mean ages and (c) concordia plot of mica—plogioclase lamprophyre in Tianming gold deposit, Hunan
5.2 全岩元素地球化学
样品烧失量较高,结合镜下观察显示的强碳酸盐化等特征,表明样品遭受了强烈的蚀变(表2)。对于蚀变较强的样品,K、Ca、Na等活动元素受蚀变影响较大(Winchester et al.,1976),而不活动元素相对不受蚀变影响。因此,可使用不活动元素图解Zr/TiO2—Nb/Y、Th—Co图解分别代替TAS、K2O—SiO2图解进行岩浆岩辨识和分类,这些图解具有变质或蚀变岩浆岩分类的适用性(Winchester et al.,1977;Hastie et al.,2007);煌斑岩属于中性浅成岩,适用此类图解。图解显示岩脉属于中性浅成(闪长)岩类(图5a),具有高钾钙碱性/超钾质地球化学特征(图5b)。
表2 湖南天明金矿区云斜煌斑岩全岩地球化学数据表Tab. 2 Whole—rock geochemical data of the mica—plogioclase lamprophyre in Tianming gold deposit, Hunan
图5 湖南天明金矿区云斜煌斑岩地球化学图解Fig. 5 Geochemical plots of mica-plogioclase lamprophyre in Tianming gold deposit, Hunan
主量元素归一化后显示SiO2=53.83%~57.59%,为中性岩。Al2O3=13.54%~15.87%,富Al;MgO=8.57%~9.39%,富Mg;Fe2O3=0.34%~0.77%,FeO=6.48%~8.19%,富Fe;MnO=0.13%~0.16%,Mn含量较少;Mg#=46.53~50.35,平均值48.78。整体表现为富镁铁质中性岩浆特征。
微量元素显示(表2,图6),大离子亲石元素(LILE)相对亏损且变化范围较大,镜下特征显示斜长石受到强烈的蚀变作用,大量被碳酸盐集合体交代,进而导致大离子亲石元素(LILE)相对分散(Rollinson,1994);高场强元素(HFSE)Nb、Ta、Ti强烈亏损;其余元素具有较为一致的走势。ΣREE=542.50×10—6~634.81×10—6,ΣLREE=521.32×10—6~612.06×10—6,ΣHREE=19.64×10—6~22.75×10—6,LREE/HREE=24.61~26.98,模式斜率(La/Yb)N=46.75~49.06,反映LREE强烈富集、HREE强烈亏损、二者分馏程度较高。δEu=0.61~0.84<1,δCe=1.26~1.29>1,显示了Eu负异常且轻微数值分散及Ce正异常。相容元素Cr(354×10—6~711×10—6)、Co(31.1×10—6~34.8×10—6)、Ni(129×10—6~196×10—6)、V(132×10—6~153×10—6)含量较高。
图6 湖南天明金矿区云斜煌斑岩原始地幔标准化微量元素标准化蛛网图(a)及球粒陨石标准化稀土元素配分模式图(b)(标准化数据来自Sun et al.,1989)Fig. 6 (a) Primitive mantle-normalized trace element patterns and (b) chondrite-normalized REE of the mica-plogioclase lamprophyre in Tianming gold mining zone, Hunan
5.3 Sr-Nd同位素
全岩Sr-Nd同位素结果见表3,ISr=0.730 63~0.739 57,INd=0.512 08~0.512 11,εNd(t)=—8.28~—7.61,Nd同位素亏损地幔模式年龄TDM=1.11~1.14 Ga。
表3 湖南天明金矿区云斜煌斑岩Sr-Nd同位素组成表Tab. 3 Nb-Sr isotopic compositions of the mica-plogioclase lamprophyre in Tianming gold mining zone, Hunan
6 讨论
6.1 成岩年龄
一般来说,岩浆锆石富Th、U,Th/U>0.1,变质锆石富U贫Th,Th/U<0.1(Hoskin et al.,2000;吴元保,2004),云斜煌斑岩锆石48个点分析结果显示(表1),谐和度>90%的36组数据中Th/U=0.1~1.78,排除了典型变质成因,符合岩浆锆石成因(王梓桐等,2022;张培烈等,2022);但硅不饱和的基性岩通常被认为不会有锆石结晶,均为捕获锆石(Zheng et al.,2006),不能直接代表成岩年龄,成岩时间不早于捕获锆石中的最小年龄。
谐和度≥90%的206Pb/238U年龄结果可大致分为104~163 Ma、245~286 Ma、414~439 Ma、2 414~2 511 Ma等4个区间,其中414~439 Ma与2 414~2 511 Ma两组数据加权平均年龄分别为(418.79±1.57)Ma(MSWD=0.37)及(2 506±14)Ma(MSWD=0.049)(图4b),分别记录了志留纪末扬子地块与华夏地块群中岛弧的弧陆碰撞(潘桂棠 et al.,2016)以及太古宙末陆壳的初次大规模增生事件(李献华 et al.,1991;潘桂棠 et al.,2016),表征基底物质对成岩的显著贡献。206Pb/238U最小年龄有104 M和124 Ma,Th/U值为1.26与1.78,结合锆石形态、环带显示具有岩浆锆石特征(图4a)。虽然脉岩发生了碳酸盐化蚀变,但碳酸盐化蚀变温度一般低于锆石封闭温度,蚀变与未蚀变云斜煌斑岩年龄基本保持一致(张国震 et al., 2021),因此,可以约束成岩年龄≤(104±1) Ma(图4),为晚白垩世。
华南板块广泛展布晚白垩世岩浆岩,其中花岗岩时代集中于109~87 Ma(李献华,1999; 李建华等,2014),玄武岩集中于110~80 Ma(胡瑞忠等,2004),基性脉岩分别集中于105 Ma及95~85 Ma(Li,2000)。显示了较为集中的岩浆活动时间,反映了一期重要的构造-岩浆事件(毛景文等,2004),其后的地质历史中,华南板块记录的岩浆活动稀少。因此,云斜煌斑岩很可能形成于~110~104 Ma岩浆事件中。
6.2 岩石成因
因岩脉强碳酸盐化蚀变,使用全岩地化数据时需首先讨论蚀变影响,排除受蚀变影响较强的元素以更好的反映原始岩浆。受元素离子势控制,Ca、Na、K、Sr、Ba、Rb、Eu等活动元素受蚀变影响较大,Mg、Fe、Zr、Hf、Nb、Ta、Y、Ti、Cr、除Eu以外的REE,及Cr、Co、Ni、V、Th、Ga、Sc、P是在变质或蚀变中相对稳定的元素(Winchester et al.,1976;Rollinson,1994;Hastie et al.,2007)。微量元素Nb、Ta、Ti强烈亏损,Zr、Hf相对亏损(图6),原因可能有:①地壳混染。②俯冲流体交代影响。③岩浆源区部分熔融过程中高场强元素富集矿物残留或分离结晶(赵玉锁等,2012)。距离俯冲前缘超800 km,华南动力学演化过程显示俯冲流体未涉及本区,可以排除原因②。Nb、Ta亏损可能由角闪石源区残留导致(Kay et al.,1991),与岩脉中不含角闪石、钛铁矿、金红石的地质事实一致;钛铁矿和/或金红石的源区残留会引起Ti亏损并同时引起Zr、Hf亏损,同样符合蛛网图特征(图6)。因此,岩浆演化过程中可能发生了角闪石、钛铁矿和/或金红石矿物的结晶分异。
因地幔MgO含量较高,相容元素富集于镁铁质矿物。云斜煌斑岩富MgO(8.57%~9.39%>7%)、高Mg#(46.53~50.35),以及相容元素Cr(354×10—6~711×10—6)、Co(31.1×10—6~34.8×10—6)、Ni(129×10—6~196 ×10—6)、V(132×10—6~153 ×10—6)含量较高的特征,表明地幔贡献明显。Nb/Ta=12.83~14.48,平均值为13.87,低于原始地幔平均值17.8,高于地壳平均值11.4(Sun et al.,1989;McDonough et al.,1995);Zr/Hf=34.02~35.68,平均值为34.78,同样介于地壳值与地幔值(分别为33与36.3)之间(Taylor et al.,1985);使用区分壳源和壳幔型的(La/Yb)N-δEu图解(图7a)进行参考,投点均位于壳幔型区域,共同表明岩浆来自地幔并接受地壳混染。在La/Sm-La图解中,投点与分离结晶过程所表现的近水平直线趋势一致(图7b),蛛网图显示Eu、Sr具有负异常(徐耀明等,2012),且岩脉富含斜长石组成的细小斑晶,指示岩浆演化过程以斜长石的分离结晶为主。
图7 湖南天明金矿区云斜煌斑岩(La/Yb)N-δEu(a)及La/Sm-La二元图解(b)(Davidson et al.,2007)Fig. 7 (a) (La/Yb)N-δEu and (b) La/Sm-La diagram for the mica-plogioclase lamprophyre in Tianming gold mining zone, Hunan
Sr受蚀变影响较大,文中使用Nd同位素比值表征源区特征。εNd(t)代表岩石结晶时初始值的Nd偏离度,εNd-年龄(Ma)图解(Zindler et al.,1986)中云斜煌斑岩εNd(—8.28~—7.61)范围集中,落点靠近华南板块新元古代地壳范围且明显脱离该区域(图8),为壳幔混源。临近研究区的锡矿山云斜煌斑岩被认为反映了冷家溪群和板溪群在燕山期发生了重熔(吴良士等,2000),暗示本区壳源混染可能也来自类似地壳基底物质。
图8 湖南天明金矿区云斜煌斑岩εNd(t)-年龄(Ma)判别图解(Zindler et al.,1986)Fig. 8 εNd(t)-Age (Ma) diagram for the mica-plogioclase lamprophyre in Tianming gold mining zone, Hunan
综上所述,地幔岩浆在源区残留角闪石、钛铁矿和/或金红石,上涌过程中发生斜长石分离结晶,并受地壳混染,最终沿断裂通道侵位形成云斜煌斑岩。
6.3 成岩成矿物源关系
湖南安化一带,如锡矿山、符竹溪、廖家坪、板溪、田庄、太平、龙山等金-锑矿(区)存在上百条印支-燕山期岩脉(彭渤等,2000;张志远等,2018),与金-锑矿床时空关系密切。符竹溪锑金矿(距天明3 km)长英质岩脉或被矿脉充填切割(彭建堂,1999),或矿体赋存于岩脉两侧褪色化蚀变带中,或岩脉直接含矿(刘继顺,1996),成为勘查工作中的找矿标志(潘灿军等,2015);板溪锑矿近EW向石英斑岩脉局部可见含金-锑石英脉穿插(赵军红等,2005),岩脉旁有蚀变现象(胡楚南,1991),控矿构造与岩脉充填构造具有一致性(赵军红等,2005),并且S、Pb同位素显示成矿流体为变质热液与岩浆混合流体(卢作祥等,1989;姚振凯等,1995),成岩时代约194~202 Ma(赵军红等,2005),被认为岩浆活动在成矿后进行了热液改造;锡矿山锑矿煌斑岩脉时代为127.8 Ma(彭渤等,2000; 吴良士等,2000)、119 Ma(李智明,1993),硫同位素反映了物质来源可能与岩浆混合有关(李智明,1993)。暗示天明金矿区云斜煌斑岩可能与金锑成矿也具有密切联系。
对湘中地区脉岩、雪峰带金锑赋矿地层、地壳Au、Sb含量进行统计对比(图9)。天明云斜煌斑岩Au含量均值(1.44 ×10—9)显著低于脉岩、赋矿地层、地壳,并未发生元素富集;而Sb含量均值(30.35 ×10—6)则高于地壳丰度近150倍,并显著高于赋矿层位,与湘中地区脉岩含量近似。符竹溪锑矿穿切并胶结早期破碎金矿脉(潘灿军等,2015),揭示了本区锑成矿晚于金成矿。另外,天明云斜煌斑岩时代与锡矿山脉岩接近,晚于符竹溪;暗示锑矿化与燕山晚期岩脉侵入关系密切,二者可能具有深部同源性,岩脉侵入可能提供了部分成矿物质和流体,岩浆可能作为热源驱动活化了成矿物质,天明金矿区具有锑成矿潜力。
图9 湖南湘中地区脉岩、赋矿地层、地壳Au和Sb含量图解Fig. 9 The content of Au and Sb of the dikes in middle Hunan and ore formations and crust
7 结论
(1)天明云斜煌斑岩U-Pb同位素约束成岩时代不早于104 Ma,可能是晚白垩世华南板块构造-岩浆事件的响应。
(2)捕获锆石419 Ma及2 506 Ma两组谐和年龄分别记录了志留纪末扬子地块与华夏地块群中岛弧的弧陆碰撞及太古宙末陆壳的初次大规模增生事件,表明基底的物源贡献。
(3)云斜煌斑岩由地幔岩浆在源区残留角闪石、钛铁矿和/或金红石,受地壳混染形成。
(4)脉岩与锑可能具有深部同源性,天明矿床具有锑成矿潜力。