阴离子型水性聚氨酯超纤革染色性能及模拟
2023-11-22韩雨兰杜远远宋兵李春霖牛家嵘
韩雨兰 杜远远 宋兵 李春霖 牛家嵘
摘 要:为探究阴离子型水性聚氨酯超纤革的染色性能,分别以弱酸性染料及中性染料对其进行染色;绘制恒温上染速率曲线及吸附等温线,分析这两种染料对水性聚氨酯超纤革的染色热力学和动力学特征,并对亲和力、染色热和染色熵等参数进行了计算和分析。结果表明:随着染色温度的升高,两种染料对水性聚氨酯超纤革的上染率逐渐增加,染料对水性聚氨酯超纤革的上染行为符合伪二级动力学模型。超纤革中聚酰胺超细纤维和水性聚氨酯间存在许多微小孔隙,染料在超纤革表面的吸附和微孔中的扩散吸附同时进行,两种染料对水性聚氨酯超纤革的吸附符合Freundlich吸附模型。水性聚氨酯超纖革染色性能的研究为水性超纤革的染色应用提供了理论支持,进一步扩大了水性超纤革的应用领域。
关键词:水性聚氨酯;超纤革;上染速率;吸附等温线;动力学模型
中图分类号:TS193.8 文献标志码:A 文章编号:1009-265X(2023)06-0199-08
天然皮革含有较多的胶原蛋白,纤维束间相互缠绕构成复杂的三维立体结构[1-3];天然皮革柔软性、耐磨性好,强度高且吸湿透气性能好[4-7]。随着人们环保意识的提升以及原材料的不足,开发能替代天然皮革的合成革已成为皮革行业发展的趋势。超细纤维合成革相较于天然皮革在物理机械性能和耐化学稳定性能方面有明显的改善,成为天然皮革的优良替代品。然而超细纤维合成革在透气、透湿性及染色性能[6,8-12]方面与天然皮革仍存在明显的差距。
以往对溶剂型聚氨酯超纤革的染色研究,主要从染料类型[13]、助剂[14-16]、染色工艺[17-18]、基布改性[19-20]等方面来解决染色不匀、渗透性差、色牢度差等染色问题[21]。水性聚氨酯因分子中引入了大量亲水基团(如羧酸根、磺酸根),其微观结构和堆砌状态与溶剂型聚氨酯有所不同,分子链极性增强,Zeta电位在-70~-60 mV;其在染液中溶胀现象明显,有“凝胶化”的倾向,会阻碍染液在超纤革孔隙内的渗透。因此水性聚氨酯超纤革与溶剂型超纤革的染色性能差异很大,难以借鉴溶剂型超纤革的染色经验来解决染色中遇到的问题。本文通过水性聚氨酯超纤革的染色动力学及热力学研究,分析其染色性能和特点,为染色工艺的制定和染色问题的解决提供一定的借鉴。
1 实 验
1.1 试剂及原料
无水乙醇(分析纯,天津市科密欧化学试剂有限公司),冰醋酸(分析纯,天津市风船化学试剂科技有限公司),弱酸性蓝MD-R(工业级,市售),中性依素伦灰(工业级,市售)。
超纤革为阴离子型水性聚氨酯聚酰胺6超纤革,面密度为509 g/m 聚酰胺6革基布面密度为384 g/m 由明新孟诺卡(江苏)新材料研究院有限公司提供。
1.2 实验设备
紫外-可见-红外分光光度计(PE-λ-7500,珀金埃尔默仪器有限公司);电子天平(CP224C,奥豪斯上海有限公司);数显恒温水浴锅(XMTD-7000,上海梅香仪器有限公司);电热恒温鼓风干燥箱(GZX-GF101-1-S-II,上海贺德实验设备有限公司);循环水式真空泵(SHZ-D(III),巩义市予华仪器有限公司);旋转蒸发仪(RE-52AA,上海雅荣生化设备有限公司);pH计(PHS-3C,上海仪电科学仪器股份有限公司)。
1.3 实验方法
1.3.1 染料的提纯
称取3 g染料,采取少量多次的方式加入无水乙醇,充分溶解染料;随后对染液进行抽滤和冲洗,去除染料中未溶解的无机盐等杂质;将滤液旋转蒸发得到提纯的染料。将提纯后的染料烘干、研磨,待用。
1.3.2 超纤革前处理
将实验所用的水性聚氨酯超纤革进行充分洗涤,去除表面的油污及杂质。将处理干净的水性聚氨酯超纤革烘干,待用。
1.4 测试方法
1.4.1 标准工作曲线的测定
配制5种不同质量浓度的染料,并在其最大吸收波长下测定其吸光度。实验所用标准工作曲线方程如表1所示。
1.4.2 恒温上染速率的测定
在染色过程中,染料随染液流动并向纤维转移。通过对水性聚氨酯超纤革染色过程中上染速率曲线的测定,可初步了解染色过程中染料上染水性聚氨酯超纤革的状态。水性聚氨酯超纤革恒温上染速率曲线染色工艺处方如表2所示。
按照表2染色工艺配制所需的染液,当染色温度达到所需温度时,将水性聚氨酯超纤革放入染液中,测定不同时间下染液吸光度,利用相应的工作曲线方程计算得到上染速率曲线。
1.4.3 吸附等温线的测定
水性聚氨酯超纤革吸附等温线工艺配方如表3所示。按表3配制不同浓度的染液,在30 ℃时投入水性聚氨酯超纤革,以恒定速率升温至所需温度(T=60、70、80、90 ℃),染色10 h后测定水性聚氨酯超纤革上染料质量浓度Df(mg/g)与染液中染料质量浓度Ds(mg/L)。
2 结果与分析
2.1 染料吸附动力学研究
不同染色温度下染料对水性聚氨酯超纤革的恒温上染速率曲线如图1所示。在上染过程中,染料首先与超纤革表面的水性聚氨酯及聚酰胺超细纤维发生吸附。随着染液逐渐渗透进入超纤革内部细微的孔隙中,染料对超纤革内部的聚氨酯和纤维发生吸附。由图1可知,在染色初始阶段,染料上染水性聚氨酯超纤革速率非常快,上染量与时间几乎呈线性关系,随着时间的延长,上染趋于平衡。对于弱酸性染料蓝MD-R而言,随着染色温度的升高,平衡上染量逐渐提高,当温度升高至90 ℃时有所下降。这是因为随着温度的升高,染料分子热运动加剧,从超纤革上脱附的趋势增加所致。
对于中性染料依素伦灰而言,平衡上染量随着温度的升高而增加。这是因为中性染料分子通常缺乏像磺酸根这样能够在水中完全电离的强极性基团,更为常见的是甲基磺酰胺基、酰胺基等极性基团,染料分子在染液中容易聚集,较高的染色温度有利于染料解聚并向超纤革的内部转移。适中的染色温度可以增强水性PU分子链段及染料分子的热运动,提高染料的平衡上染量。
分别采用准一级和准二级动力学模型对这两种染料上染水性聚氨酯超纤革的过程进行拟合分析。
准一级动力学方程认为吸附速率与吸附浓度一次方成正比,如式(1)所示:
式中:C∞为平衡时纤维上染料浓度,mg/g;Ct为t时刻纤维上染料浓度,mg/g;k1为准一级速率常数,min-1;k2为准二级速率常数,g/(mg·min)。
不同温度下,各染料上染水性聚氨酯超纤革过程的最小二乘法拟合计算结果如表4和表5所示。由拟合计算结果R2可知,两种染料对水性聚氨酯超纤革的上染符合准二级动力学模型,上染速率受染色温度的影响较大。另外,弱酸性染料的k随染色温度的升高降低,而中性染料的k受温度的影响不如弱酸性染料那么明显。因此,在实际染色工艺中,中性染料可以采用较高的染色温度来获得更高的平衡上染率,而上染速率不会受到明显影响。
2.2 水性聚氨酯超纤革的染色热力学研究
2.2.1 染料上染水性聚氨酯超纤革的吸附模型
选取不同初始浓度的染液对水性聚氨酯超纤革进行染色,60 ℃下的吸附等温线如图2所示。
本文分别使用Freundlich和Langmuir吸附模型对染料的上染过程进行拟合。Freundlich吸附模型如式(5)、式(6)所示:
式中:KF为Freundlich吸附常数(L/g),KL为Langmuir吸附常数(L/mg),[S]f为理论单分子吸附饱和吸附量(mg/g)。超纤革对蓝MD-R的两种等温吸附模型拟合如图3所示,超纤革对依素伦灰的两种等温吸附模型拟合如图4所示。
由表6可知,两只染料的Freundlich模型R2更高,其对水性聚氨酯超纤革的等温吸附过程更符合Freunlich等温吸附模型。染料对水性聚氨酯超纤革的吸附属于物理吸附,非定位吸附。在上染过程中,由于染料除了在水性聚氨酯超纤革表面发生吸附,染料还会随染液不断渗入超纤革内部水性聚氨酯的细微孔隙中并发生吸附,染料上染纤维的浓度[D]f不断增加,在测试浓度范围内没有明显的极限,表现出一定程度的多层吸附特征。
2.2.2 热力学参数的计算
通过染色亲和力-Δμ°、染色热ΔH°和染色熵ΔS°的计算,进一步了解染料对水性聚氨酯超纤革的上染特点。各参数的计算如式(9)—式(11)所示:
式中:R为热力学常数,单位为8.314 J/(mol·K),T为热力学温度,单位K。
不同染料对水性聚氨酯超纤革上染的热力学参数见表7。由表7可知,随着温度的升高,染色亲和力数值增加。这表明在高温的条件下,染料从染液向超纤革转移的趋势增大,依素倫灰在相同温度下亲和力高于弱酸性蓝MD-R。
弱酸性蓝MD-R的染色热为负值,表明上染为放热过程,升高染色温度会使染料向解吸方向移动,平衡上染量下降;但数值较小,说明这种变化不会太明显。依素伦灰染色热为正值,且数值高,说明上染过程是吸热的,升高染色温度,会使染色向吸附方向移动,平衡上染率提高。值得注意的是,水性聚氨酯超纤革由聚酰胺纤维和水性聚氨酯复合构成,染色热是染料对两者上染的综合体现,既有材料性质方面的,也有组成结构方面的,而非染料分别上染二者的染色热的简单叠加。
两种染料的染色熵都为正值,说明染料上染水性聚氨酯超纤革引起体系紊乱度增大。染色熵的变化不仅与染料本身紊乱度变化有关,还与染色体系中水的紊乱度变化有关。中性染料依素伦灰的疏水性高于弱酸性蓝MD-R,所以熵值的增加更明显。
3 结 论
分别以弱酸性染料蓝MD-R和中性染料依素伦灰对水性聚氨酯超纤革进行染色,对恒温上染速率曲线及吸附等温线进行测定和分析,探讨了水性聚氨酯超纤革对两种染料的吸附和上染动力学特征。得出以下结论:
a) 随着染色温度的升高,两种染料对水性聚氨酯超纤革的上染量逐渐增加。中性染料依素伦灰在温度较高的条件下具有更高的上染性能,而弱酸性染料蓝MD-R在较高温条件下易解吸。两种染料对水性聚氨酯超纤革的吸附行为符合准二级动力学模型。
b) 弱酸性染料蓝MD-R和中性染料依素伦灰对水性聚氨酯超纤革上染过程符合Freundlich吸附模型。水性聚氨酯超纤革内部含有许多微小的空隙,在染料上染过程中会有部分染料进入水性聚氨酯超纤革内部孔隙中,表现出类似于多层吸附的情况。
c) 随着染色温度的升高,两只染料的染色亲和力数值增加,较高的染色温度有利于中性染料依素伦灰的进一步上染。由于依素伦灰染料中缺乏强极性基团,导致染色体系的熵值增加。
通过弱酸性蓝MD-R和中性染料依素伦灰对水性聚氨酯超纤革的染色吸附及动力学进行了相应分析。对水性聚氨酯超纤革的上染特性及染色机理有了一定的了解,为后续水性聚氨酯超纤革的染色应用提供了理论支持。
参考文献:
[1]朵永超,钱晓明,赵宝宝,等.超纤革仿天然皮革研究进展[J].中国皮革,2019,48(3):41-45.
DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, et al. Advances in mircrofiber synthetic leather emulating natural leather[J]. China Leather, 2019, 48(3): 41-45.
[2]QI J B, ZHANG C B, FU J Y, et al. Natural and synthetic leather: A microstructural comparison[J]. Journal of the Society of Leather Technologists and Chemists, 2008, 92(1): 8-13.
[3]WANG Y Y, ZHENG M H, LIU X H, et al. Advanced collagen nanofibers-based functional bio-composites for high-value utilization of leather: A review[J]. Journal of Science: Advanced Materials and Devices, 2021, 6(2): 153-166.
[4]许维.天然皮革微观结构及其透气透湿性能研究[D].武汉:武汉纺织大学,2012:1-8.
XU Wei. Study on Natural Leather's Micro-structure and Its Permeability of Air and Water Vapor[D]. Wuhan: Wuhan Textile University, 2012: 1-8.
[5]任龙芳,赵国徽,强涛涛,等.超细纤维合成革仿天然皮革研究进展[J].皮革科学与工程,2012,22(1):36-40.
REN Longfang, ZHAO Guohui, QIANG Taotao, et al. Advances in the mircrofiber synthetic materials emulating natural leather[J]. Leather Science and Engineering, 2012, 22(1): 36-40.
[6]刘凡,钱晓明.提高超细纤维合成革透湿透气性能的研究进展[J].纺织导报,2017(8):78-80.
LIU Fan, QIAN Xiaoming. Research progress on improving moisture permeability and air permeability of microfiber synthetic leather[J]. China Textile Leader, 2017(8): 78-80.
[7]ZHANG A H, JI X W, JIA J L, et al. Air permeability and moistore penetration performance of leather from a microscopic view[J]. Journal of the Society of Leather Technologists and Chemists, 2015, 99(1): 30-32.
[8]高龍飞,钱晓明,王立晶,等.上浆浆料对超细纤维合成革性能的影响[J].皮革科学与工程,2021,31(6):39-44.
GAO Longfei, QIAN Xiaoming, WANG Lijing, et al. Effect of sizing material on properties of microfiber synthetic leather[J]. Leather Science and Engineering, 2021, 31(6): 39-44.
[9]张贝贝,李运,侯瑞婷.天然皮革的湿整理加工工艺对超细纤维聚氨酯合成革性能的影响[J].皮革与化工,2019,36(5):20-24.
ZHANG Beibei, LI Yun, HOU Ruiting. Effect of wet finishing technology of natural leather on properties of microfiber polyurethane synthetic leather[J]. Leather and Chemicals, 2019, 36(5): 20-24.
[10]徐娜,刘洪涛,秦民飞,等.胶原蛋白改性超细纤维合成革基材的吸湿透湿性能研究[J].西部皮革,2018,40(9):46-50.
XU Na, LIU Hongtao, QIN Minfei, et al. Study on moisture absorption properties of collagen modified microfiber synthetic leather substrates[J]. West Leather, 2018, 40(9): 46-50.
[11]XU N, WANG X C, WANG L Z, et al. Modification of PA/PU superfine non-woven fiber for "breath" property using collagen and vegetable tannins[J]. Journal of Industrial Textiles, 2019, 48(10): 1593-1615.
[12]王亚停,赵家琪,王碧佳,等.超细纤维合成革的染色与功能整理研究进展[J].纺织学报,2020,41(7):188-196.
WANG Yating, ZHAO Jiaqi, WANG Bijia, et al. Research progress in dyeing and functional finishing of microfiber synthetic leather[J]. Journal of Textile Research, 2020, 41(7): 188-196.
[13]潘笑娟,王利民,杨柳波,等.超细PA/PU合成革用酸性染料的染色性能研究[J].染料与染色,2006(4):27-31.
PAN Xiaojuan, WANG Limin, YANG Liubo, et al. Study on dyeing properties of acid dyes for superfine PA/PU synthetic leather[J]. Dyestuffs and Coloration, 2006(4): 27-31.
[14]胡雪麗,马兴元,郭梦亚,等.固色剂SLA在超细纤维合成革染色中的应用研究[J].中国皮革,2014,43(23):24-27.
HU Xueli, MA Xingyuan, GUO Mengya, et al. Application of fixative SLA in the dyeing of microfiber synthetic leather[J]. China Leather, 2014, 43(23): 24-27.
[15]李峥嵘,涂伟萍,赖应光,等.超细锦纶PU革增深匀染剂Intratex LPUA[J].印染,2010,36(21):27-29.
LI Rongzheng, TU Weiping, LAI Yingguang, et al. Intratex LPUA, Deepening levelling agent for Ultra-fine nylon PU leather[J]. China Dyeing & Finishing, 2010, 36(21): 27-29.
[16]白刚,刘艳春.苯甲醇对超细纤维合成革染色性能的影响[J].纺织学报,2011,32(1):78-81.
BAI Gang, LIU Yanchun. Effect of benzyl alcohol on Dyeing Properties of microfiber synthetic leather[J]. Journal of Textile Research, 2011, 32(1): 78-81.
[17]李长余.超细尼龙纤维PU革一浴一步法染色工艺探讨[J].染整技术,2014,36(3):41-42.
LI Changyu. Study on one-bath one-step dyeing process for PU leather of superfine nylon fiber[J]. Textile Dyeing and Finishing Journal, 2014, 36(3): 41-42.
[18]胡忠杰.超纤染色牢度的工艺优化[J].印染,2018,44(15):32-34.
HU Zhongjie. Process optimization of microfiber dyeing fastness[J]. China Dyeing & Finishing, 2018, 44(15): 32-34.
[19]马向东.胶原蛋白对超细纤维合成革基布的改性及其表面亲水性研究[D].西安:陕西科技大学,2020:10-73.
MA Xiangdong. Study on Modification of Microfiber Synthetic Leather Substrate by Collagen and Its Surface Hydrophilicity[D]. Xi'an: Shanxi University of Science and Technology, 2020:10-73.
[20]马兴元,吕凌云,李哓.聚酰胺超细纤维合成革基布的酶法改性研究[J].中国皮革,2010,39(5):36-39.
MA Xingyuan, LU Lingyun, LI Xiao. Enzymatic modification of polyamide microfiber synthetic leather substrates[J]. China Leather, 2010, 39(5): 36-39.
[21]LEE S K, LEE H Y, KIM S D. Dyeing properties of mixture of ultrafine nylon and polyurethane with different types of dye[J]. Fibers and Polymers, 2013, 14(12): 2020-2026.
Dyeing properties andsimulation of anionic waterborne polyurethane microfiber leather
HAN Yulan1, DU Yuanyuan1, SONG Bing2, LI Chunlin2, NIU Jiarong1
Abstract: With the shortage of natural leather resources and the enhancement of people's awareness of environmental protection, the development of artificial leather products that can replace natural leather has become a trend of the industry. In recent years, synthetic leather products have been widely used in household, automobile and other industries. As the artificial leather products are most like natural leather at present, microfiber synthetic leather is often dyed to further expand its application range. In the dyeing process of microfiber synthetic leather, the dyeing properties of microfiber and polyurethane are not consistent, and the problems of levelness and poor color fastness often arise in the dyeing process. For the solvent-based polyurethane microfiber leather, the current dyeing methods and technologies can meet the market demand. For the waterborne polyurethane microfiber leather, influenced by hydrophilic monomers, the internal structure of the polyurethane is changed, and the adsorption and diffusion behavior of dyes on waterborne polyurethane microfiber leather are also changed correspondingly. At present, the dyeing mechanism and dyeing properties of waterborne polyurethane microfiber leather are rarely studied. To improve the dyeing technology of waterborne polyurethane microfiber leather, it is necessary to study the dyeing behavior theoretically.
In this paper, the adsorption kinetics and dyeing thermodynamics of waterborne polyurethane microfiber leather dyed by weak acid dye blue MD-R and neutral dye isolan grey respectively were studied. The uptake of both kinds of dyes on waterborne polyurethane microfiber leather were improved with the increase of the dyeing temperature. The blue MD-R was easily to desorpt from waterborne polyurethane microfiber leather, and the equilibrium dye rate decreased. While the neutral dye was easily to congregate, high dyeing temperature was helpful for dispersion and diffusion, so at 90 ℃ the equilibrium dye rate was increased significantly. During the dyeing process, the adsorption of the two dyes conformed to the quasi-second-order kinetic model. There were many micro interstice between the waterborne polyurethane and polyamide microfibers in the leather. During the dyeing process, the dyes were adsorbed on the surface of the microfiber leather and gradually penetrated into the interstice. The isothermal adsorption of the two dyes on the waterborne polyurethane microfiber leather was consistent with Freunlich adsorption model. The thermodynamic calculation results showed that the dyeing affinity of the two dyes was increased with the increasement of temperatures. The dyeing of waterborne polyurethane microfiber leather with the weak acid dye was an exothermic process, while with the neutral dye was an endothermic process.
Keywords: waterborne polyurethane; microfiber leather; dyeing rate; adsorption isotherm; dynamic model
收稿日期:20230423 網络出版日期:20230804
基金项目:技术开发类横向合作项目(21021010375)
作者简介:韩雨兰 (1998—),女,江苏盐城人,硕士研究生,主要从事水性聚氨酯超纤革染色方面的研究。
通信作者:牛家嵘,E-mail: niujiarong@tiangong.edu.cn