APP下载

大清河流域山丘区大兰小流域立地分类与评价

2023-10-30刘佳琪闫烨琛杨建英王美琪

中国水土保持科学 2023年5期
关键词:坡向坡度生物量

刘佳琪, 闫烨琛, 杨建英, 王美琪

(1.北京林业大学水土保持学院,100083,北京; 2.北京市凉水河管理处,100069,北京;3.天津市地质工程勘测设计院有限公司,300191,天津;4.中国林业出版社有限公司,100009,北京)

大清河流域为雄安新区水资源保障体系的重要组成部分[1]。《全国重要生态系统保护和修复重大工程总体规划(2021—2035年)》中提出“推进白洋淀综合治理,加强水源涵养林和水土保持工程建设”。“十四五”河北省建设京津冀生态环境支撑区规划中将大清河流域列为环京津生态过渡带,但该流域气候干旱,水土流失严重,导致上游断流、河流干涸、白洋淀干淀现象频发[2]。为此学者开展上游水源涵养林配置研究,提出封山育林、侧柏+荆条混交、侧柏+山杏混交、侧柏+刺槐混交及油松+刺槐混交5种适宜配置模式,一定程度保障了流域生态流量[3-4]。立地划分与质量评价是实现林木空间优化配置的前提[5],对相似的水源涵养林立地条件进行归一划分,明确林木生长影响因子,针对不同立地下的林木生产潜力进行评价,可为因地制宜科学造林提供理论指导。目前学者多采用主导环境因子分类组合法[6]、多因子综合分类法[7]和植被因子分类法[8]对有林地进行立地类型划分,但针对北方少林地研究较少,且尚未建立ArcGIS空间数据库。大清河流域作为水资源保障区,通过合理的立地划分与评价,针对不同立地类型和质量等级因地制宜配置适宜的植物,保证林木健康生长同时极大发挥林木的生态效益,对水源涵养林的营造具有重要指导意义。笔者选取大清河流域上游山丘区的大兰小流域为研究区,将野外调查与ArcGIS相结合,筛选北方少林地立地划分与评价的指标,为我国北方京津冀植树造林提供理论指导。

1 研究区概况

大兰小流域位于河北省保定市易县(E 114°56′~115°4′、N 39°12′~39°17′),总面积4 664.21 hm2,位于大清河上游山丘区,其北部支流中易水横穿大兰小流域(图1)。属于温带季风气候带,年最高气温41 ℃,年最低气温-23 ℃,年平均降水量 552~571 mm。 海拔226~1 343 m,总体呈北高南低趋势,北部为中、低山区域,南部为丘陵区,坡度多>25°;土壤以山地褐土为主,500 m以上阴坡有淋溶褐土分布,土壤厚度较薄,多为20 cm以下。阳坡土层厚度低于10 cm,植被覆盖度较低,植物以荆条(Vitexnegundovar.heterophylla)为主,长势一般;阴坡植被覆盖度较高,主要乔木为油松(Pinustabuliformis)、侧柏(Platycladusorientalis)、山杨(Populusdavidiana)、五角槭(Acerpictumsubsp.mono)、刺槐(Robiniapseudoacacia)等;灌木包括荆条、胡枝子(Lespedezabicolor)、酸枣(Ziziphusjujubavar.spinosa)等;草本以菊科(Compositae)和禾本科(Gramineae)植物为主。

图1 研究区分布图

2 材料与方法

2.1 野外调查与数据收集

在大兰小流域范围内布设30个典型样地,对每个样地布设20 m×20 m乔木样方,经每木检尺获取树种、数量、树高及胸径数据,利用周边地区的树种相对生长方程计算山杨[9]、刺槐[10]、侧柏[11]和五角槭[12]的地上生物量,油松生物量计算参考LY/T 2260—2014《立木生物量模型及碳计量参数——油松》(表1);每个样地设置5个2 m×2 m灌木样方和1 m×1 m草本样方,记录样方内灌草的种类和数量,并测其鲜质量和干质量,从而获得灌草生物量,计算乔灌草总生物量;挖取样地土壤剖面,获取土层厚度;取0~20 cm层原状土,设置3次重复,实验测定土壤密度、土壤pH值和土壤有机质[13]。

表1 乔木生物量计算模型

通过地理空间数据云获取30 m分辨率的数字高程模型(DEM),利用ArcGIS空间分析提取海拔、坡度和坡向数据,由资源环境科学与数据中心获取土壤类型数据,掩膜提取得到研究区内土壤类型数据,并结合外业调查样点资料对以上数据进行逐一验证,精度达到100%。

2.2 主导立地因子筛选

初步选取海拔X1、坡度X2、坡向X3、土壤类型X4、土层厚度X5、土壤密度X6、土壤pH值X7、土壤有机质X8作为立地因子,除海拔、坡度、土层厚度、土壤密度和土壤pH值数量化因子外,需对坡向和土壤类型定量化处理:坡向根据经验公式[14]转换为编码,阴坡、阳坡和平地分别为1、0.3和1.5;土壤类型根据其生产力排序,棕壤土、褐土和石质土依次为3、2和1。利用SPSS软件对水源涵养林生物量X9与8个立地因子(X1~X8)进行皮尔逊相关性分析,筛选与乔灌草总生物量呈显著相关的立地因子进行主成分分析,根据分析结果确定主导立地因子。

2.3 立地类型划分

确定立地因子的分级标准,对主导立地因子分级并绘制单因子等级图,利用ArcGIS叠置分析功能对单因子分级图进行叠加,经众数滤波去除小斑块后,在属性表中添加“立地类型”字段,依据主导立地因子方差贡献率大小排序进行字段赋值,针对相邻立地类型相同的斑块,经要素融合处理后,得到大兰小流域立地类型矢量分布图。

2.4 立地质量评价

土壤化学性质是影响立地质量的重要因子[15]。笔者选取与研究区乔灌草总生物量呈显著相关的因子为评价因子,利用ArcGIS中普通克里金法对31个野外调查样点数据进行空间插值,获取大兰小流域的评价单因子图,因坡向与土壤类型为定性指标,经重分类进行量化处理后,利用模糊隶属度对评价因子的栅格数据进行标准化处理。采用均方差决策分析与层次分析法相结合计算指标的综合权重,通过栅格计算器对标准化后的指标图层进行权重叠加,并根据分级标准进行重分类,得到立地质量评价等级图。

2.4.1 均方差决策分析法 对立地指标Gj进行标准化得到量纲为1的指标值,计算经标准化处理后的立地指标随机变量均方差,再对均方差进行归一化处理,得到各立地指标的权重值。

(1)

(2)

(3)

式中:E(G1)为随机变量的均值;σ(Gj)为Gj指标的均方差。

(4)

式中wj为Gj指标的权重系数。

2.4.2 层次分析法 构建层次分析结构,确定立地质量评价指标体系:准则层为地形(B1)和土壤(B2);指标层为海拔(C1)、坡度(C2)、坡向(C3)、土壤类型(C4)、土层厚度(C5)、土壤pH(C6)、土壤有机质(C7),采用专家打分法对每层中的指标重要性进行打分,构建A-B、B1-C、B2-C3个层次的判断矩阵,将准则层与指标层权重相结合,确定各指标层次分析法权重。

3 结果与分析

3.1 主导立地因子分析

经皮尔逊相关性分析(图2),筛选出与生物量指标X9显著相关的立地因子为海拔X1、坡向X2、土壤类型X3、坡度X4、土层厚度X5、土壤pHX7和土壤有机质X8(P<0.05),后进行主成分分析,得到前4个主成分特征根>1且累积贡献率达89.671%(>80%),则可代表8个指标的特征信息,因此确定大兰小流域的主导立地因子,依次为海拔、坡度、坡向和土壤类型。

**.在0.01水平(双侧)上显著相关;*.在0.05水平(双侧)上显著相关。**: Significant correlation at 0.01 level (bilateral); *: significantly correlated at 0.05 level (bilateral).

图3 立地类型图

分析主导立地因子可知,大兰小流域中海拔以200~500 m为主,丘陵为分布最广的地貌类型,占55.61%;坡度以15°~35°为主,斜陡坡所占据的面积最广,为54.46%,急陡坡面积最少,为4.60%;坡向以阳坡为主,占63.44%;土壤类型以褐土为主,占80.04%。

3.2 立地类型划分

参考《中国森林立地分类》、GB-T 15772—2008《水土保持综合治理规划通则》和GB/T 17296—2009《中国土壤分类与代码表》中对于海拔、坡度、坡向和土壤类型的划分标准,并结合立地因子对植物生物量的影响程度及分布情况,对主导立地因子进行分级,划分标准见表2。

表2 主导立地因子的分级标准

根据主导因子的主成分分析的方差贡献率,依次对立地类型以“海拔+坡度+坡向+土壤类型”命名,大兰小流域共划分出26种立地类型(图2),将划分结果与野外实测点矢量数据相叠加,在属性表中逐一验证每个样点2类数据对应度,其精度达100%。立地类型面积比例见表3,大兰小流域中丘陵平缓阳坡褐土立地类型占面积最大,为 762.93 hm2,占16.37%,其次是低山斜阳坡褐土,为670.23 hm2,占14.38%;中山平地棕壤和丘陵急陡阴坡石质土为分布较少,均<0.10%。

表3 立地类型划分

3.3 立地质量评价

通过均方差决策分析和层次分析法相结合得到大兰小流域评价指标的综合权重(表4),利用重分类工具将大兰小流域划分为优(≥0.70)、良(≥0.50~0.70)、中(≥0.30~0.50)、差(<0.30)4种立地质量评价等级,并绘制小流域立地质量评价等级图(图4)。

表4 评价指标权重

Ⅱ为良等级,Ⅲ为中等级,Ⅳ为差等级。Ⅱ is good grade, Ⅲ is medium grade and Ⅳ is poor grade.

经ArcGIS面积统计,大兰小流域的立地质量评价中无优等级立地,良、中和差等级立地分别占流域总面积的50.47%、48.48%和1.05%;面积分别为23.00、22.09和0.48 km2。各立地类型的立地质量分布如图5所示,评价等级为良的区域主要分布于小流域南部,该等级下的立地类型分布情况为:丘陵斜阴坡褐土占大兰小流域总面积的18.85%、丘陵缓阳坡褐土占12.42%、丘陵斜阳坡褐土占11.85%;评价等级为中的区域主要分布于小流域中北部,低山斜阳坡褐土占11.66%、低山斜阴坡褐土占6.53%、中山斜阳坡棕壤占5.80%;等级为差Ⅳ的区域零星分布于小流域中东部,低山急陡阳坡褐土占0.44%、低山斜阳坡褐土占0.25%。

(a)区立地质量等级为“良”;(b)区立地质量等级为“中”;(c)区立地质量等级为“差”。The site quality grade of area (a) is “good”; the site quality grade of area (b) is “medium”; the site quality grade of area (c) is “poor”.

4 讨论

4.1 主导因子筛选与立地划分

本研究以北方少林地为研究区,筛选出海拔、坡度、坡向和土壤类型为立地划分的重要指标,海拔作为影响流域内水源涵养植物生长与分布的首要因子,海拔的不同改变多种环境因子垂直分异情况[16],进而影响物种地上生物量与多样性[17],在保持地形、土壤类型和土层厚度等环境因子条件基本相同下,经皮尔逊相关性分析得到,海拔与生物量呈显著负相关,其原因在于高海拔下温度低,水热供应弱,生物量下降。根据立地质量分布结果,良等级主要分布于小流域南部及东部的中、低海拔的丘陵和低山区;差等级的立地类型主要分布于北部高海拔的中山区,此立地质量等级分布与海拔分布基本一致。坡度影响土壤养分和水分的再分配[18],陡坡经降雨击溅和水流冲刷后易发生土壤养分流失,平、缓坡更有利于保持水土。本研究得出,立地质量等级为良主要位于平地或缓坡,等级为差皆位于斜陡坡和急陡坡[19],坡度越小越适宜物种分布,且物种多样性越高。不同坡向下的光照、水分和温度等因素有明显差异,改变土壤间水热条件再分配,形成局部小气候,影响植物物种组成、分布和生物量[20]。笔者发现,立地质量等级为差的均为高陡山区的阳坡立地类型,所占面积仅为研究区0.99%,立地质量为良的丘陵缓阳坡褐土立地类型占12.42%,其原因在于海拔和坡度更大程度影响水热条件与土壤养分分配,弱化坡向对立地质量的影响,验证文章中主成分分析得到的因子贡献率海拔>坡度>坡向。不同的土壤类型下,土壤结构、质地和养分均有差异,从而影响土壤生产力,生产力越高,林木生物量越大[21]。因此,笔者筛选出海拔、坡度、坡向和土壤类型作为主导立地因子。

与传统的立地类型划分方法相比,利用实地调查与ArcGIS空间叠加相结合方法,可快速划分立地类型并获取各立地类型分布情况,提升对位,但划分精度受DEM底图精度限制,笔者利用GIS划分的立地类型面矢量数据与野外实测点矢量数据相结合,逐一验证后分类精度达100%,若开展小尺度研究,可采用无人机航拍获取高分辨率航测影像,提升立地类型划分精度。

4.2 立地质量评价

针对有林地的立地质量研究,多利用地位指数构建树木生长模型,评价林地生产力[22];对无林地或者少林地研究,多采用层次分析法确定各立地指标权重[23]。鉴于本研究区多为灌草地和荒地,不宜采用地位指数法,为消除专家打分法的主观影响与客观赋权法中因过度依靠公式而偏离实际的情况,本文将层次分析法与均方差法相结合,得到指标综合权重。利用克里金插值法实现野外实测样点数据由点及面,采用模糊隶属度法对量化后的指标选取相应隶属函数进行标准化,经权重叠加形成评价等级图,可直观、精准掌握立地质量分布情况。

根据大兰小流域优势树种分布的调查结果(图5)可知,立地质量为良等级区内优势种依次为刺槐、荆条、油松、杨树和侧柏;中等级区优势种为荆条、刺槐、油松、蒙古栎(Quercusmongolica)和侧柏;差等级区以荆条为主。由于大兰小流域良和中等级区达98.95%,适宜采用乔灌草相结合的恢复模式,根据王美琪[3]利用SWAT模型对本流域水源涵养林空间优化配置结果,可优先选取水源涵养能力最佳的油松+侧柏,搭配荆条、马唐(Digitariasanguinalis)和狗尾草(Setariaviridis)混交模式;针对差等级区可采用马唐、艾蒿(Artemisiaargyi)和牛筋草(Eleusineindica)草本混交方式进行恢复。

考虑到油松人工林易受到林分密度影响[24],因此在水源涵养林营造过程中需保证合理林木栽植密度。由于本研究受立地因子种类和样本数量所限,为确保后期造林成效,可针对不同造林树种、各树种生态限制因素进行树种适宜区分布研究[25-26],在立地质量与各树种适宜区分布基础上,考虑局地小气候、种间关系、树种适应环境的进化能力、社会经济和人为影响[27],提升造林成活率和林木质量。

5 结论

笔者以白洋淀大清河流域上游山丘区大兰小流域为研究对象,经相关性分析和主成分分析,按贡献率筛选出海拔>坡度>坡向>土壤类型为主导立地因子,划分26种立地类型。根据立地质量评价得分划分优~差4种立地质量评价等级,立地质量得分为0.25~0.68;无优等级立地;良等级立地比例达50.47%,在研究区中分布最广,主要分布在海拔较低的平地或缓坡地区,适宜采用乔灌草结合的恢复模式;中等级的立地类型占48.48%,主要分布在坡度较陡的地区,植被恢复难度大,可采用灌草结合进行植被恢复;差等级立地占1.05%,仅分布于大兰小流域土质较差的石质土地区。建议采用草本恢复或自然恢复,同时在造林时应加大整地措施投入,改善立地条件。

猜你喜欢

坡向坡度生物量
轮牧能有效促进高寒草地生物量和稳定性
DEM地表坡向变率的向量几何计算法
关于公路超高渐变段合成坡度解析与应用
基于图像处理的定位器坡度计算
青藏高原东缘高寒草甸坡向梯度上植物光合生理特征研究
生物量高的富锌酵母的开发应用
坡度在岩石风化层解译中的应用
CT和MR对人上胫腓关节面坡度的比较研究
基于SPOT-5遥感影像估算玉米成熟期地上生物量及其碳氮累积量
坡向和坡位对小流域梯田土壤有机碳、氮变化的影响